
CheckPointer
A C Memory Access Validator

Michael Mehlich
Semantic Designs, Inc.

Austin, TX
mmehlich@semanticdesigns.com

Abstract—CheckPointer is a memory access validator for
checking spatial and temporal pointer usage errors in mul-
ti-threaded applications by tracking meta data and validating
pointer dereferences at run-time. The tool uses source-to-
source transformations implemented with DMS to instrument
the source code of the application to be validated with meta
data checks. Libraries available only in binary form are
handled by using function wrappers that check meta data im-
mediately before calling a library function and update meta
data as necessary immediately after the library function re-
turns.

Keywords-CheckPointer; memory safety; memory debugger;
out-of-bounds error; pointer error; memory access error; instru-
mentation; source-to-source transformations; DMS

I. INTRODUCTION

Many security vulnerabilities and software bugs in C
have their origin in pointer usage errors such as accessing
memory outside the bounds of the current object or accessing
memory that is not currently allocated by the application.
Where these errors cause immediate deterministic applica-
tion failures, their location is usually easy to pinpoint. How-
ever, often the application will continue executing for some
time after the original error has been made, before delayed
symptoms of the errors can be observed, e.g. in form of the
application following some unexpected code paths, produ-
cing unexpected results, or causing an access violations in a
different code fragment. In general, the delayed symptoms
have no obvious connection to the original error, making it
extremely hard to determine their cause, i.e. to pinpoint the
original error. Thus, a tool reporting the original error imme-
diately when performed is invaluable for the engineer debug-
ging and testing such applications.

The CheckPointer memory access validator provides a
means to get such early reporting of pointer usage errors.
The tool achieves this by instrumenting the source code to
track additional information (a.k.a. “meta data”) about ob-
jects and pointers in the application and validate any pointer
usage for well-definedness against this information. The
pointer usage errors detected by the tool include the follow-
ing:
• Spatial errors:

Access of memory outside the bounds of a known
(sub-)object.

◦ Invalid pointer error:
Dereference of a pointer that is null, uninitial-
ized, or has been computed incorrectly from an
arbitrary source.

◦ Out-of-bounds error:
Use of a subscript that is outside the bounds of
an array or string (sub-)object, or
Dereference of a pointer resulting in access of
memory outside the bounds of a (sub-)object.
This includes the case where dereferencing a
pointer to a member field results in accessing
memory outside the bounds of the member field
though still within the object.

◦ Invalid free error:
Deallocation of non-heap object, e.g. a global or
local object or a string literal, or
Deallocation of sub-object of a heap-allocated
object.

◦ Wrong kind of pointer error:
Read or write though a (type-casted) function
pointer, or call through a (type-casted) data
pointer.

• Temporal errors:
Access of memory that has already been deallocated.
◦ Deallocated heap error:

Dereference of a pointer to heap (sub-)object
that has already been deallocated.

◦ Escaped pointer error:
Dereference of a pointer to a non-static local
(sub-)object in a block after execution of the
block has finished.

◦ Double free error:
Deallocation of a heap-allocated object that has
already been deallocated.

These temporal errors are detected even if the deal-
located memory is being reused for a different
stack- or heap-allocated object but accessed through
a stale pointer.

To increase responsiveness, to take advantage of mul-
ti-core processors, or to simplify coding of cooperative tasks,
applications increasingly exploit multiple threads of execu-
tion. In order to deal with such applications, the source code
instrumented by the CheckPointer memory access validator

performs thread-safe updates of meta data*, tracks thread loc-
al data, and checks for related escaped pointer errors, i.e. for
dereferences of pointers to thread-local storage of threads
that already terminated.

II. IMPLEMENTATION

CheckPointer is implemented on top of the DMS Soft-
ware Reengineering Toolkit [2], a generic compiler infra-
structure for the development of source code analysis and
transformation tools, and its front-end for the C program-
ming language.

The infrastructure and front-end provide means to pre-
process and parse C source code in various dialects, perform
name and type resolution to construct a proper symbol table
for the source code, modify the resolved source code by ap-
plying source-to-source transforms that may query the sym-
bol table and other semantic information, and unparse the
modified source code for further processing by external
tools, e.g. a compiler.

CheckPointer augments this infrastructure and front-end
by providing source-to-source transforms that insert meta
data tracking and pointer dereference validating statements
and by orchestrating the instrumentation of multiple transla-
tion units, allowing for incremental instrumentation of modi-
fied translation units without the needs to reinstrument the
whole application.

A. Organization of Meta-data
In order to validate all memory accesses in the applica-

tion code, the instrumented source code produced by Check-
Pointer keeps track of the following meta data:
• Pointer meta data for each pointer, consisting of

◦ A reference to the object meta data for the heap-
allocated object or global or local variable or
function pointed to by the pointer and

◦ The address range of the (sub)object of the ob-
ject that the pointer may currently access. This
may be smaller than the address range of the
whole object; e.g. if you take the address of a
struct member, the instrumented source code
will only allow access to that member when us-
ing the resulting pointer.

• Object meta data for each heap-allocated object, for
each variable and function the address of has been
taken, and for each variable of struct or array type con-
taining member fields or array elements of pointer
type, consisting of

* CheckPointer assumes that the application does not contain any data
races, i.e. read/write or write/write “conflicts” between parallel threads,
though on many hardware platforms read/write accesses to e.g. pointer
variables are actually atomic. If such data races exist, the meta data
may not be read/written properly despite the original accesses being
atomic, which may eventually cause memory access errors being re-
ported or missed. If a “data race” is intentionally used by a particular
application, the corresponding read/write accesses must be protected
by proper locking in the original code in order to properly execute the
instrumented code. Preprocessing conditions can be used to ensure that
locking only occurs in the instrumented code. Note that the C standard
does not require read/write accesses to pointer variables being atomic.

◦ The kind and location of the object, i.e. whether
it is a function, a global, thread-local or local
variable, heap-allocated memory, or a string lit-
eral constant,

◦ The address range of the object that may be
safely accessed, and

◦ For each pointer stored in the heap-allocated ob-
ject or variable, a reference to the pointer meta
data for that pointer.

Whenever a pointer is assigned to another pointer, the as-
sociated pointer meta data needs to be copied, too. This in-
cludes the case where a struct is assigned to another struct, in
case of which the pointer meta data for all member fields of
pointer type must be copied accordingly.

Whenever the lifetime of an object ends, its associated
object meta data, if exists, must be destroyed and all pointers
pointing to or into the object must be marked as stale in order
to check for temporal errors. However, CheckPointer does
not keep track of all the pointer meta data referencing a par-
ticular object meta data. Thus, in order to achieve the desired
effect, the object meta data is only marked as “destroyed”
but its memory is not deallocated. Object meta data memory
is recycled for other object meta data by using a unique
“generation key” stored in both the object meta data and
each pointer meta data referencing the object meta data. Us-
ing this approach, “destruction” of object meta data consists
of updating the generation key, and validating a pointer in-
cludes performing a non-staleness check consisting of check-
ing whether the generation key stored in its associated point-
er meta data is identical to the generation key stored in the
referenced object meta data.

Figure 1 shows the meta data for an example, a pointer
ps to a struct value s containing three pointers pa, pb, and
pc. The pointer ps has associated pointer meta data referen-
cing the object meta data associated to the struct value s. The
object meta data for s references the pointer meta data asso-
ciated to three member pointers pa, pb, and pc.

If a new pointer value is assigned to ps, then the pointer
meta data associated to the new pointer value is copied into
the pointer meta data associated to ps. Similarly, if a new
pointer value is assigned to a pointer member of s, say pb,
then the pointer meta data associated to the new pointer
value is copied into the pointer meta data associated to the
member pb in the object meta data associated to s. If a new

Figure 1. Organization of meta data (example).

Object Meta Data

(Sub)object Address

Pointer Meta Data

Object Address

Object Meta Data

(Sub)object Address

Pointer Meta Data

Object Meta Data

(Sub)object Address

Object Meta Data

(Sub)object Address

Object Meta Data

(Sub)object Address

Pointer Meta Data Object Meta Data Pointer Meta Data

Pointer Meta Data

Pointer Meta Data

struct S {
struct A *pa;
struct B *pb;
struct C *pc;

} s, *ps = &s;

value is assigned to s, the pointer meta data associated to all
the pointer members, i.e. to pa, pb, and pc are copied. If s
ceases to exist, e.g. because it was a local variable and the
function defining s terminated, the object meta data associ-
ated to s is marked as “destroyed” causing all pointers to s
considered as being stale.

To pass meta data between a calling and a called func-
tion, the instrumented source code manages a shadow stack
of call meta data. For each function call, the shadow stack
contains the following information:
• The number of actual arguments passed to the called

function (assigned by the calling function),
• For each pointer formal parameter of the called func-

tion the pointer meta data of the actual argument (as-
signed by the calling function),

• For each struct or union formal parameter of the called
function, the pointer meta data for the address of the
actual argument (assigned by the calling function and
immediately used by the called function to copy the
referenced object meta data to the object meta data of
the formal parameter),

• For a pointer result of the called function, the pointer
meta data of the called function's result (assigned by
the called function),

• For a struct or union result of the called function, the
pointer meta data for the address of the target location
for the function result (assigned by the calling function
with the referenced object meta data being updated by
the called function upon execution of a return state-
ment).

• Position information for the function call (used to cre-
ate a call trace when an error is encountered), and

• A reference to the call meta data for the parent call.
A pointer to the top entry of the shadow stack is stored in

a global or thread-local variable. Passing meta data between
the calling and the called function therefore does not require
changing function signatures.

The call meta data is allocated on the actual C call stack,
which avoids heap allocation of the call meta data but may
require increasing the stack size for the application.

B. Instrumentation of Source Code
CheckPointer realizes run-time tracking of meta data and

validation of pointer dereferences by instrumenting the ori-
ginal source code using source-to-source transformations im-
plemented using the DMS Software Reengineering Toolkit

and its C front-end supporting various C dialects, including
GCC and Visual C.

Each translation unit of an application is instrumented
separately using the following basic steps:
• Preprocess and parse the source code into a syntax

tree,
• Perform name and type resolution over the syntax tree

to create a symbol table,
• Normalize the syntax tree into a functionally equival-

ent simplified form of C,
• Instrument the normalized syntax tree using source-to-

source transformations, and
• Unparse the instrumented syntax tree into instru-

mented source code.
For each processed translation unit the instrumenter also

augments a cache file containing information about the files
used in the application, the meta data for global variables
needed or made available by the translation unit, the sizes of
global array variables, and the sizes of flexible array mem-
bers of global struct variables. After all translation units of
the application have been instrumented, this information is
used to generate an auxiliary source file containing declara-
tions and missing initializers of meta data and an auxiliary
header file containing the collected sizes of the arrays and
flexible array members. The auxiliary header file is needed
to perform proper out-of-bounds checks on these arrays and
array members in translation units that do not explicitly spe-
cify their sizes.

1) Sample Instrumentation Rules: During instrumen-
tation all pointer dereferences must be instrumented in order
to validate the well-definedness of the respective
dereferences and propagate the corresponding pointer meta
data when necessary. Using the DMS Software
Reengineering Toolkit, such instrumentation can be
achieved by modifying the (name and type resolved) syntax
tree searching for patterns describing pointer dereferences
and replacing these with appropriate validating and
propagating code fragments. Though performed on the
syntax tree level, such replacement rules are actually
specified using the native syntax of the underlying
programming language C embedded in a meta language for
declaring rules and combining them to rule sets.

Figure 2 shows a transformation rule for dealing with as-
signments of the form id1 = &id3->id4 where id1 is a
variable of pointer type.

rule ReplaceAR2a4a1(id1:IDENTIFIER,id3:IDENTIFIER,id4:IDENTIFIER):expression->expression
 = "\id1 = &\id3->\id4"
 -> "(
 // compute pointer meta data for \id1
 pointer_meta_data_restrict(&\GetPointerMetaData\(\id1\), &\GetPointerMetaData\(\id3\),
 &\id3->\id4, sizeof \id3->\id4),
 // perform original assignment
 \id1 = &\id3->\id4
)"
 if IsPointerObjectOrParameter(id1) /\ IsPointerObjectOrParameter(id3).

Figure 2. Instrumentation rule for id1 = &id3->id4.

The right hand side of the rule consists of two steps, first
assigning the pointer meta data for the pointer to the member
field to the pointer meta data associated to the target, which
is computed by restricting the pointer meta data for the point-
er id3 to the address range of the field id4, and then execut-
ing the original assignment. This rule does not introduce any
validation for pointer dereferences as the original code only
computes the address of a field without dereferencing any
pointer.

Figure 3 shows a transformation rule for dealing with as-
signments of the form *id1 = id3->id4 where all in-
volved variables and member fields are of pointer type.

The comments on the right hand side of the rule indicate
the steps performed by the replacement of the original ex-
pression, consisting of first validating whether the target of
the assignment can be written and whether the source of the
assignment can be read, then copying the pointer meta data
associated to the source pointer to the pointer meta data asso-
ciated to the target pointer, which involves looking up the
pointer meta data via the corresponding pointed-to objects,
and finally executing the original assignment.

For local variables the address of which is taken, the in-
strumenter needs to create and “destroy” object meta data at
appropriate points during program execution.

Figure 4 shows a transformation rule* for dealing with
the break statement. This rule's application condition (im-
plemented by procedural code walking over the syntax tree
and consulting the symbol table) checks whether terminating
the nearest enclosing loop or switch statement ends the life-

* Note that when the rule is being processed all occurrences of the break
statement reference the same syntax tree node; which is the break
statement in the syntax tree for the source code being instrumented the
left hand side of the rule successfully matched with.

time of a local object declared within the loop or switch
statement for which object meta data may have been created
during execution. If this is the case, the rule inserts the final-
izers necessary to “destroy” the object meta data associated
to such local variables, ensuring that further accesses to these
local variables through pointers will fail. Similar rules are
provided to cover other forms of jump statements.

CheckPointer uses a large number of rules* similar to the
above ones to declare pointer meta data and object meta data
where necessary, validate pointers that are being derefer-
enced, propagate pointer meta data for assignments, mark
object meta data for local variables as “destroyed” when
their respective lifetimes end, and add function prologues
and epilogues to create and destroy call stack meta data. The
orchestrated application of these rules ensures that the result-
ing instrumented code is well-formed and performs the de-
sired memory access validation checks when compiled and
executed.

2) Wrappers for Binary Libraries: The instrumentation
added by CheckPointer assumes that the whole application
is instrumented properly to manage the necessary meta data.
One way to achieve this is by instrumenting the complete
source code of the application. However, in practice, this is
often not possible, as the application uses functionality
provided by the C standard library, by the operating system,
and by third party libraries, which often only come in binary
form with a description of its available interfaces. Thus,
instrumented source code has to interact with non-
instrumented library code.

In general, the instrumented source code can be directly
linked with the non-instrumented library code as the function
signatures are not changed by the instrumenter. Thus, point-
ers passed into functions provided by non-instrumented lib-
raries, as well as pointers received from functions (by means
of the function's return value or its side-effects) in these lib-
raries do not pose any problems for the instrumented source

* The number of rules is positively correlated with the number of differ-
ent forms of statements, in particular assignments involving pointers,
remaining after normalizing the syntax tree into a functionally equival-
ent simplified form of C. The more forms are remaining, the more
rules are needed instrument all pointer usages. However, in the ab-
sence of any other optimizations, more remaining forms allow better
instrumentation code being produced.

rule ReplaceAR3a5a1(id1:IDENTIFIER,id3:IDENTIFIER,id4:IDENTIFIER):expression->expression
 = "*\id1 = \id3->\id4"
 -> "(
 // check for *\id1 being writable
 pointer_meta_data_check_write(\id1, sizeof *\id1,
 &\GetPointerMetaData\(\id1\), \GetPosition\(*\id1\)),
 // check for \id3->\id4 being readable
 pointer_meta_data_check_read(&\id3->\id4, sizeof *&\id3->\id4,
 &\GetPointerMetaData\(\id3\), \GetPosition\(\id3->\id4\)),
 // propagate pointer meta data for \id3->\id4 to pointer meta data for *\id1
 *pointer_meta_data_lookup(\GetPointerMetaData\(\id1\).object_meta_data, \id1)
 = *pointer_meta_data_lookup(\GetPointerMetaData\(\id3\).object_meta_data, &\id3->\id4),
 // perform original assignment
 *\id1 = \id3->\id4
)"
 if IsPointerObjectOrParameter(id1) /\ IsPointerExpression("*\id1")
 /\ IsPointerObjectOrParameter(id3) /\ IsPointerMemberField(id4).

Figure 3. Instrumentation rule for *id1 = id3->id4.

private rule FinalizersForBreak
 (ss:statements,s:statement)
 :statement->statement
 = "{ \ss break; }"
 -> "{ \ss
 \CreateFinalizersForBreak\(break;\);
 break;
 }"
 if DoesBreakRequireFinalizers("break;").

Figure 6. Instrumentation rule for break statement.

code as long as they are handled as opaque data. However,
such pointers are not validated when dereferenced from
within the non-instrumented libraries. The instrumented
source code also cannot dereference pointers received by
non-instrumented libraries, as proper meta data for these
pointers is not available.

These limitations can be overcome by producing wrap-
pers for the non-instrumented functions. In general, such
wrappers have three major phases to safely simulate the ori-
ginal function:
• Validate that calling the original function is safe:

The function arguments and any other program state
are checked to validate that calling the original func-
tion will not cause any memory access errors. This
usually involves reading and checking the meta data
associated to the function arguments and/or other
global objects.

• Call the original function:
The original function is called to ensure that the core
functionally of the call is preserved by the wrapper
function.

• Update meta data to reflect the effects of the original
function:
The pointer and object meta data tracked by Check-
Pointer to perform memory access validation must be
updated to reflect the effects of the original function
on such data. Dependent on the function this may in-
clude creating, reading, updating, and/or deleting such
meta data.

Further complications arise when an instrumented func-
tion is to be passed as a call-back to a non-instrumented
function. In such cases, a wrapper needs to be passed instead
that updates meta data if necessary, creates appropriate call
meta data before calling the actual instrumented function.
and destroys the call meta data afterwards. If necessary, this
may be followed by some additional validation of meta data
to ensure that continuing execution in the caller is safe.

CheckPointer provides an interface to write such function
wrappers by providing means to validate pointers against
meta data and update meta data.

This interface has been used to implement wrappers for
the standard C library functions, including the memory copy
functions memcpy and memmov, which require copying all
pointer meta data within an address range to corresponding
pointer meta data in another address range from the object
meta data of an object to the object meta data of the same or
another object.

Similarly, the interface has also been used to implement a
wrapper for the begin thread call in multi-threaded applica-
tions. This wrapper performs some initial setup and instead
of starting a thread with the desired (instrumented) function
starts the thread with a wrapper function that first establishes
an appropriate context for meta data management, then calls
the desired (instrumented) function, and finally upon its ter-
mination marks the object meta data for thread-local vari-
ables as being “destroyed”. The wrapper for the end thread
call is somewhat more involved as it needs to mark as “des-
troyed” not only the object meta data for thread-local vari-
ables but also for any local variables along the call stack
starting from the root function of the thread. This can be
achieved by the instrumented source code tracking the object
meta data for local objects and thread-local variables in ap-
propriate lists associated to the call stack meta data, which
then can be accessed by the begin thread and end thread calls
when needed.

The wrapping approach to thread-local variables and
thread execution management relies on these capabilities be-
ing provided in form of library functions. However, such
capabilities are not standardized and may be provided by
other means for a particular compiler or platform. E.g. gcc
provides a __thread keyword while Visual C provides a
__declspec(thread) phrase as a storage class specifier to
declare “global” or “static local” variables as being thread-
local. In general, CheckPointer may need to be modified to

01: #include <windows.h>
02: #include <process.h>
03: #include <stdio.h>
04:
05: __declspec(thread) int tls_variable;
06: int *global_pointer;
07:
08: unsigned int __stdcall set_global_pointer(void *args) {
09: global_pointer = &tls_variable; // set global pointer to thread-local variable
10: *global_pointer = 1; // well-defined dereference of pointer to thread-local variable
11: return 0;
12: }
13:
14: int main() {
15: //printf("Global pointer to thread local variable in current thread\n");
16: set_global_pointer(0);
17: *global_pointer = 2; // well-defined dereference of pointer to thread-local variable
18: //printf("Global pointer to thread local variable in terminated thread\n");
19: HANDLE thread = (HANDLE)_beginthreadex(NULL, 0, set_global_pointer, NULL, 0, NULL);
20: WaitForSingleObject(thread, INFINITE); // wait for thread to terminate
21: CloseHandle(thread);
22: *global_pointer = 3; // illegal dereference of escaped pointer to thread-local variable
23: return 0;
24: }

Figure 4. Erroneous multi-threaded C program.

understand such compiler or platform specific constructs. Its
current implementation already handles the above mentioned
constructs when processing source code in the respective
dialects, and utilizes these storage class specifiers to declare
variables for tracking thread-local meta data.

C. Examples
CheckPointer has been successfully applied to various

test cases and a commercial compiler for a proprietary paral-
lel programming language developed in C that has been in
continuous use for over a decade. CheckPointer itself has
been implemented in this parallel programming language and
compiled with that compiler.

1) Escaped Pointer to Thread-local Variable: The C
program in figure 5 contains one of the test cases used for
validating CheckPointer. In this test case, a pointer to a
thread-local variable is stored in a global variable which
later is dereferenced after the thread the variable was
associated to terminated.

Compiled normally with Visual C++ 2010 Express in de-
bug mode and executed in the debugger*, this test case fin-
ishes execution of the main function apparently successfully,
but afterward causes a breakpoint exception in an NT kernel
function called from

msvcr100d.dll!_free_base(void *pBlock)
 Line 50 + 0x13 bytes
The only suggestion about the error given by the debug-

ger is that the error “may be due to a corruption of the heap”,
without providing any further help in pinpointing the loca-
tion of the error.

If instead the test case is instrumented using CheckPoint-
er, the instrumented source code compiled with Visual C++,
and the resulting binary executed, the following output is
produced:

*** Error: Dereference of dangling pointer.
 in function: main, line: 22, file Example.c
The error report clearly indicates the location of the erro-

neous pointer dereference in the source code before the as-
signment can do any damage to internal data structures.

2) Compiler for a Parallel Language: CheckPointer has
been applied to a (single-threaded) compiler for a

* Note that if executed outside the debugger, the test case, though com-
piled in debug mode, appears to finish successfully without producing
any error message at all.

proprietary parallel programming language, called
PARLANSE [1]. This compiler has been used continuously
since over a decade to compile parallel programs.
Applications programmed in PARLANSE and successfully
compiled with the compiler include the DMS Reengineering
Toolkit, including the compiler infrastructure and the C
front-end used by CheckPointer, and in particular
procedural parts of CheckPointer itself.

The compiler's source code, constisting of about 110,000
lines of C code, has been instrumented with CheckPointer,
the instrumented source code compiled with GCC4, and the
resulting binary used to compile CheckPointer itself, produ-
cing the output shown in figure 6.

Upon further investigation of the error locations, both
cases turned out to be out-of-bounds accesses to an array
embedded in a larger struct, although the memory accessed
was still within the enclosing struct. (The compiler worked
by accident.)

D. Related Work
There are various tools for detecting spatial or temporal

pointer usage errors, or a combination thereof, at run-time.
Such tools use different approaches for instrumenting the ap-
plication:
• Source code instrumentation consists of adding run-

time checks into the source code, in general independ-
ent of a particular compiler or target platform. The res-
ulting instrumented source code is processed by a
compiler after successful instrumentation.

This approach is used by CheckPointer.
CCured [8] also uses source code instrumentation,

reducing overhead for tracking meta data and validat-
ing pointer usage by applying optimizations based on
an extension of C's type system. However, CCured
uses fat pointers causing incompatibility issues in real
code due to memory layout changes of compound data
types, while CheckPointer avoids layout changes by
keeping meta data in separate data structures. CCured
ignores explicit deallocation of memory; instead it
uses a garbage collector to reclaim heap-allocated
memory and disallows pointers to local variables be-
ing stored in heap-allocated memory and global vari-
ables.

PARLANSE Compiler V19.16.41
*** Error: Dereference of pointer is out of bounds.
 in function: ReadNextInputBlock, line: 697, file P0File.c
 called in function: SetUpINCLUDEFile, line: 593, file: P0File.c
 called in function: SemIncludeFile, line: 27437, file: P0Compiler.c
 called in function: LRParser, line: 8256, file: P0Compiler.c
 called in function: CompileSourceFile, line: 8824, file: P0Compiler.c
 called in function: main, line: 9254, file: P0Compiler.c
*** Error: Dereference of pointer is out of bounds.
 in function: NextFileByte, line: 718, file P0File.c
 called in function: NextSourceByte, line: 867, file: P0File.c
 called in function: GetNextTerminal, line: 6556, file: P0Compiler.c
 called in function: EnsureHoldingCurrentToken, line: 7833, file: P0Compiler.c
 called in function: LRParser, line: 8089, file: P0Compiler.c
 called in function: CompileSourceFile, line: 8824, file: P0Compiler.c
 called in function: main, line: 9254, file: P0Compiler.c

Figure 5. CheckPointer error messages for an instrumented compiler.

MSCC [14] is another system using this approach,
and is implemented using CIL [9] as a foundation,
transforming a simplified form of C within CIL. Like
CheckPointer, MSCC does not use fat pointers but in-
stead uses shadow data associated with pointers and
objects. However, MSCC only allows limited casting
between pointers of “related” struct types; and does
not check for out-of-bounds errors on sub-objects.
MSCC does not support multi-threaded programs.

• Compile-time instrumentation adds run-time checks
while the source code is being compiled, usually ex-
ploiting internal data structures and optimizations used
by the compiler.

SoftBound [6] and CETS [7] use this approach,
with SoftBound providing spatial error checking and
CETS providing temporal error checking. These tools
are implemented using the LLVM compiler frame-
work [4] and operate on LLVM's typed single static
assignment form. SoftBound uses pointer meta data
similar to CheckPointer, tracking pointers stored in
memory using a hash table or a shadow space. CETS
uses a generation key similar to CheckPointer to detect
dangling pointers. The CETS prototype does not sup-
port multi-threaded programs.

MemSafe [13] is another tool using compile-time
instrumentation. It uses meta data similar to Check-
Pointer. However, while CheckPointer uses separate
maps from pointers to pointer meta data for each vari-
able or heap-allocated object containing pointers,
MemSafe uses a single global map. MemSafe utilizes
a whole program data-flow for pointers graph to per-
form various optimizations reducing execution over-
head.

Fail-Safe C [11] uses fat pointers similar to
CCured but alleviates layout change issues by map-
ping from virtual to physical byte offsets when access-
ing memory where necessary. Local variables the ad-
dress of which are taken are moved into the heap.
Garbage collection is used to avoid dangling pointers
to heap allocated memory, though memory is marked
as non-accessible when “freed”. Wrappers are needed
to interact with library functions that are not compiled
with Fail-Safe C to convert between the fat pointer
representation and the normal representation. Unlike
CheckPointer, Fail-Safe C does not check for out-of-
bounds errors on sub-objects.

• Binary instrumentation defers adding run-time checks
until after compiling the application into a binary, thus
does not suffer from source code for libraries not be-
ing available. However, high-level information from
the source code, e.g. the size and bounds of member
fields in a struct, are in general not available in binary
executables; thus tools based on binary instrumenta-
tion cannot detect out-of-bounds errors for such mem-
ber fields.

Purify [3] adds binary instrumentation on object
files after source code compilation but before linking.

It checks for pointer usage errors only for heap-alloc-
ated objects.

Valgrind [10] uses on-demand dynamic recompila-
tion of small code blocks in binary executables, by
first translating a block of machine code into an inter-
mediate representation, then allowing plug-ins to in-
strument this internal form, and finally converting it
back to machine code that is then being executed. An
available plug-in, called Memcheck, adds instrumenta-
tion for pointer usage checks. Like Purify, Valgrind
does not detect out-of-bounds errors for global or local
variables. Valgrind supports multi-threaded programs
but serializes execution to ensure that only one thread
is running at a time.

E. Conclusion
CheckPointer is a memory access validator for detecting

spatial and temporal pointer usage errors in multi-threaded C
applications at run-time. The tool is implemented using
source-to-source transformations using the DMS Software
Reengineering Toolkit and its C front-end as a basis. The in-
strumented source code produced by CheckPointer from the
original source code keeps track of meta data about pointers
and objects and checks all pointer dereferences for well-
definedness, immediately reporting an error before it can do
any actual damage. Functions for which no source code is
available are dealt with by manually producing wrappers
simulating the effects of the function on the meta data.

As CheckPointer intercepts all memory allocations and
deallocations to manage meta data for heap allocated objects,
the instrumented code can be configured to report all
memory locations that are still being allocated at the end of
application execution. Such information can be utilized to
check for memory leaks.

The current implementation of CheckPointer could be
improved by using static analysis to eliminate redundant
meta data updates and checks in the instrumented source
code, significantly reducing the execution time of the instru-
mented application. Such redundant checks include pointer
dereference checks dominated by other identical pointer
dereference checks, and pointer dereference checks for ac-
cessing multiple pointed-to fields of a single struct that could
be summarized into a single check across all fields. The
DMS Software Reengineering Toolkit and the C front-end
provide supporting infrastructure and analyses to implement
such optimizations.

Elapsed time could also be reduced by offloading the
meta data tracking and pointer usage validation from the
main thread to auxiliary parallel threads [5]. This is particu-
larly useful for a single-threaded application that is being ex-
ecuted on a multi-core platform.

CheckPointer currently assumes that direct and indirect
function calls are used with properly typed arguments. How-
ever, C compilers in general do not enforce this for direct
function calls across translation units, nor for indirect calls
through function pointers even within a single translation
unit. In order to catch such errors, CheckPointer could be ex-
tended to keep track of static and dynamic type information

and check for compatibility of such information where ne-
cessary to ensure safe execution.

For availability of CheckPointer see [12].

REFERENCES

[1] I.D. Baxter, “Parallel support for source code analysis and modifica-
tion,” International Workshop on Source Code Analysis and Manipu-
lation, pp. 3–15, IEEE, 2002.

[2] I.D. Baxter, C. Pidgeon, and M. Mehlich, “DMS: Program transform-
ation for practical scalable software evolution,” Proceedings of the In-
ternational Conference on Software Engineering, pp. 625–634, IEEE
Computer Society, 2004.

[3] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks
and access errors in C and C++ programs,” Proceedings of the Winter
USENIX Conference, pp. 125–138. USENIX, 1992.

[4] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis and transformation,” Proceedings of the
Symposium on Code Generation and Optimization, pp. 75–86, IEEE
Computer Society Press, 2004.

[5] S. Lee an J. Tuck, “Automatic parallelization of fine-grained meta-
functions on a chip multiprocessor,” International Symposium on
Code Generation and Optimization, 2011.

[6] S. Nagrakatte, J. Zhao, M.M.K. Martin, and S. Zdancewic, “Soft-
Bound: Highly compatible and complete spatial memory safety for
C,” Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 245–258, ACM 2009.

[7] S. Nagrakatte, J. Zhao, M.M.K. Martin, and S. Zdancewic, “CETS:
Compiler-enforced temporal safety for C,” Proceedings of the Inter-
national Symposium on Memory Management, ACM, 2010.

[8] G.C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: Type-safe retrofitting of legacy code,” Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 128–139, ACM, 2002.

[9] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer, “CIL: Interme-
diate language and tools for analysis and transformation of C pro-
grams,” Proceedings of the International Conference on Compiler
Construction, pp. 213–228, Springer, 2002.

[10] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 89–100, ACM, 2007.

[11] Y. Oiwa, “Implementation of the memory-safe full ANSI-C
compiler,” ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 259–269, ACM, 2009.

[12] Semantic Designs, “CheckPointer: C memory safety checker,” Inter-
net: http://www.semanticdesigns.com/Products/Memory
Safety/CMemorySafetyChecker.html, 2011 [June 7, 2011].

[13] M.S. Simpson and R.K. Barua, “MemSafe: Ensuring spatial and tem-
poral memory safety of C at runtime,” IEEE Working Conference on
Source Code Analysis and Manipulation, pp. 199–208, IEEE, 2010.

[14] W. Xu, D.C. DuVarney, and R. Sekar, “An efficient and back-
wards-compatible transformation to ensure memory safety of C pro-
grams,” Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 117–126, ACM, 2004.

	I. Introduction
	II. Implementation
	A. Organization of Meta-data
	B. Instrumentation of Source Code
	1) Sample Instrumentation Rules: During instrumentation all pointer dereferences must be instrumented in order to validate the well-definedness of the respective dereferences and propagate the corresponding pointer meta data when necessary. Using the DMS Software Reengineering Toolkit, such instrumentation can be achieved by modifying the (name and type resolved) syntax tree searching for patterns describing pointer dereferences and replacing these with appropriate validating and propagating code fragments. Though performed on the syntax tree level, such replacement rules are actually specified using the native syntax of the underlying programming language C embedded in a meta language for declaring rules and combining them to rule sets.
	2) Wrappers for Binary Libraries: The instrumentation added by CheckPointer assumes that the whole application is instrumented properly to manage the necessary meta data. One way to achieve this is by instrumenting the complete source code of the application. However, in practice, this is often not possible, as the application uses functionality provided by the C standard library, by the operating system, and by third party libraries, which often only come in binary form with a description of its available interfaces. Thus, instrumented source code has to interact with non-instrumented library code.

	C. Examples
	1) Escaped Pointer to Thread-local Variable: The C program in figure 5 contains one of the test cases used for validating CheckPointer. In this test case, a pointer to a thread-local variable is stored in a global variable which later is dereferenced after the thread the variable was associated to terminated.
	2) Compiler for a Parallel Language: CheckPointer has been applied to a (single-threaded) compiler for a proprietary parallel programming language, called PARLANSE [1]. This compiler has been used continuously since over a decade to compile parallel programs. Applications programmed in PARLANSE and successfully compiled with the compiler include the DMS Reengineering Toolkit, including the compiler infrastructure and the C front-end used by CheckPointer, and in particular procedural parts of CheckPointer itself.

	D. Related Work
	E. Conclusion

