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Abstract—CheckPointer  is  a  memory  access  validator  for 
checking  spatial  and  temporal  pointer  usage  errors  in  mul-
ti-threaded applications by tracking meta data and validating 
pointer  dereferences  at  run-time.  The  tool  uses  source-to-
source transformations implemented with DMS to instrument 
the source code of the application to be validated with meta 
data  checks.  Libraries  available  only  in  binary  form  are 
handled by using function wrappers that check meta data im-
mediately before calling a library function and update meta 
data as  necessary immediately  after the library function re-
turns.
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I.  INTRODUCTION

Many  security  vulnerabilities  and  software  bugs  in  C 
have their origin in pointer usage errors such as accessing 
memory outside the bounds of the current object or accessing 
memory that  is  not  currently allocated  by the application. 
Where these errors  cause immediate deterministic  applica-
tion failures, their location is usually easy to pinpoint. How-
ever, often the application will continue executing for some 
time after the original error has been made, before delayed 
symptoms of the errors can be observed, e.g. in form of the 
application following some unexpected code paths,  produ-
cing unexpected results, or causing an access violations in a 
different code fragment.  In general,  the delayed symptoms 
have no obvious connection to the original error, making it 
extremely hard to determine their cause, i.e. to pinpoint the 
original error. Thus, a tool reporting the original error imme-
diately when performed is invaluable for the engineer debug-
ging and testing such applications.

The CheckPointer  memory access  validator  provides  a 
means to get  such early reporting of pointer  usage  errors. 
The tool achieves this by instrumenting the source code to 
track additional  information (a.k.a.  “meta data”) about ob-
jects and pointers in the application and validate any pointer 
usage  for  well-definedness  against  this  information.  The 
pointer usage errors detected by the tool include the follow-
ing:
• Spatial errors:

Access  of  memory  outside  the  bounds  of  a  known 
(sub-)object.

◦ Invalid pointer error:
Dereference of a pointer that is null, uninitial-
ized, or has been computed incorrectly from an 
arbitrary source.

◦ Out-of-bounds error:
Use of a subscript that is outside the bounds of 
an array or string (sub-)object, or 
Dereference of a pointer resulting in access of 
memory outside  the  bounds of  a  (sub-)object. 
This  includes  the  case  where  dereferencing  a 
pointer  to a  member field results in accessing 
memory outside the bounds of the member field 
though still within the object.

◦ Invalid free error:
Deallocation of non-heap object, e.g. a global or 
local object or a string literal, or
Deallocation  of  sub-object  of  a  heap-allocated 
object.

◦ Wrong kind of pointer error:
Read or  write  though a  (type-casted)  function 
pointer,  or  call  through  a  (type-casted)  data 
pointer.

• Temporal errors:
Access of memory that has already been deallocated.
◦ Deallocated heap error:

Dereference  of  a  pointer  to  heap  (sub-)object 
that has already been deallocated.

◦ Escaped pointer error:
Dereference  of  a  pointer  to  a  non-static  local 
(sub-)object  in  a  block  after  execution  of  the 
block has finished.

◦ Double free error:
Deallocation of a heap-allocated object that has 
already been deallocated.

These temporal errors are detected even if the deal-
located  memory  is  being  reused  for  a  different 
stack- or heap-allocated object but accessed through 
a stale pointer.

To increase  responsiveness,  to  take  advantage  of  mul-
ti-core processors, or to simplify coding of cooperative tasks, 
applications increasingly exploit multiple threads of execu-
tion. In order to deal with such applications, the source code 
instrumented by the CheckPointer memory access validator 



performs thread-safe updates of meta data*, tracks thread loc-
al data, and checks for related escaped pointer errors, i.e. for 
dereferences of pointers  to thread-local storage of threads 
that already terminated.

II. IMPLEMENTATION

CheckPointer is implemented on top of the DMS Soft-
ware  Reengineering Toolkit  [2],  a  generic  compiler  infra-
structure  for the development of source code analysis  and 
transformation  tools,  and its  front-end for  the C program-
ming language.

The infrastructure and front-end provide means to pre-
process and parse C source code in various dialects, perform 
name and type resolution to construct a proper symbol table 
for the source code, modify the resolved source code by ap-
plying source-to-source transforms that may query the sym-
bol table and other semantic  information,  and unparse the 
modified  source  code  for  further  processing  by  external 
tools, e.g. a compiler.

CheckPointer augments this infrastructure and front-end 
by  providing  source-to-source  transforms  that  insert  meta 
data tracking and pointer dereference validating statements 
and by orchestrating the instrumentation of multiple transla-
tion units, allowing for incremental instrumentation of modi-
fied translation units without the needs to reinstrument the 
whole application.

A. Organization of Meta-data
In order to validate all memory accesses in the applica-

tion code, the instrumented source code produced by Check-
Pointer keeps track of the following meta data:
• Pointer meta data for each pointer, consisting of

◦ A reference to the object meta data for the heap-
allocated  object  or  global  or  local  variable  or 
function pointed to by the pointer and

◦ The address range of the (sub)object of the ob-
ject that the pointer may currently access. This 
may be smaller  than the address  range of  the 
whole object; e.g. if you take the address of a 
struct  member,  the  instrumented  source  code 
will only allow access to that member when us-
ing the resulting pointer.

• Object  meta data for each heap-allocated object,  for 
each  variable  and  function  the  address  of  has  been 
taken, and for each variable of struct or array type con-
taining  member  fields  or  array  elements  of  pointer 
type, consisting of

* CheckPointer assumes that the application does not contain any data 
races, i.e. read/write or write/write “conflicts” between parallel threads, 
though on many hardware platforms read/write accesses to e.g. pointer 
variables are actually atomic. If such data races exist,  the meta data 
may not be read/written properly despite the original accesses being 
atomic, which may eventually cause memory access errors being re-
ported or missed. If a “data race” is intentionally used by a particular 
application,  the corresponding read/write accesses must  be protected 
by proper locking in the original code in order to properly execute the 
instrumented code. Preprocessing conditions can be used to ensure that 
locking only occurs in the instrumented code. Note that the C standard 
does not require read/write accesses to pointer variables being atomic.

◦ The kind and location of the object, i.e. whether 
it  is  a function, a global,  thread-local  or local 
variable, heap-allocated memory, or a string lit-
eral constant,

◦ The  address  range  of  the  object  that  may  be 
safely accessed, and

◦ For each pointer stored in the heap-allocated ob-
ject or variable, a reference to the pointer meta 
data for that pointer.

Whenever a pointer is assigned to another pointer, the as-
sociated pointer meta data needs to be copied, too. This in-
cludes the case where a struct is assigned to another struct, in 
case of which the pointer meta data for all member fields of 
pointer type must be copied accordingly.

Whenever the lifetime of an object ends, its associated 
object meta data, if exists, must be destroyed and all pointers 
pointing to or into the object must be marked as stale in order 
to check for temporal  errors.  However,  CheckPointer does 
not keep track of all the pointer meta data referencing a par-
ticular object meta data. Thus, in order to achieve the desired 
effect,  the object meta data is only marked as “destroyed” 
but its memory is not deallocated. Object meta data memory 
is  recycled  for  other  object  meta  data  by  using  a  unique 
“generation  key”  stored  in  both  the  object  meta  data  and 
each pointer meta data referencing the object meta data. Us-
ing this approach, “destruction” of object meta data consists 
of updating the generation key, and validating a pointer in-
cludes performing a non-staleness check consisting of check-
ing whether the generation key stored in its associated point-
er meta data is identical to the generation key stored in the 
referenced object meta data.

Figure 1 shows the meta data for an example, a pointer 
ps to a struct value s containing three pointers pa,  pb, and 
pc. The pointer ps has associated pointer meta data referen-
cing the object meta data associated to the struct value s. The 
object meta data for s references the pointer meta data asso-
ciated to three member pointers pa, pb, and pc. 

If a new pointer value is assigned to ps, then the pointer 
meta data associated to the new pointer value is copied into 
the pointer meta data associated to  ps. Similarly,  if a new 
pointer value is assigned to a pointer member of  s, say pb, 
then  the  pointer  meta  data  associated  to  the  new pointer 
value is copied into the pointer meta data associated to the 
member pb in the object meta data associated to s. If a new 

Figure 1. Organization of meta data (example).
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value is assigned to s, the pointer meta data associated to all 
the pointer members, i.e. to pa, pb, and pc are copied.  If s 
ceases to exist, e.g. because it was a local variable and the 
function defining s terminated, the object meta data associ-
ated to s is marked as “destroyed” causing all pointers to s 
considered as being stale.

To pass meta data between a calling and a called func-
tion, the instrumented source code manages a shadow stack 
of call meta data. For each function call, the shadow stack 
contains the following information:
• The number of actual arguments passed to the called 

function (assigned by the calling function),
• For each pointer formal parameter of the called func-

tion the pointer meta data of the actual argument (as-
signed by the calling function),

• For each struct or union formal parameter of the called 
function, the pointer meta data for the address of the 
actual argument (assigned by the calling function and 
immediately used by the called function to copy the 
referenced object meta data to the object meta data of 
the formal parameter),

• For a pointer result of the called function, the pointer 
meta data of the called function's result (assigned by 
the called function),

• For a struct or union result of the called function, the 
pointer meta data for the address of the target location 
for the function result (assigned by the calling function 
with the referenced object meta data being updated by 
the called function upon execution of a return state-
ment).

• Position information for the function call (used to cre-
ate a call trace when an error is encountered), and

• A reference to the call meta data for the parent call.
A pointer to the top entry of the shadow stack is stored in 

a global or thread-local variable. Passing meta data between 
the calling and the called function therefore does not require 
changing function signatures.

The call meta data is allocated on the actual C call stack, 
which avoids heap allocation of the call meta data but may 
require increasing the stack size for the application.

B. Instrumentation of Source Code
CheckPointer realizes run-time tracking of meta data and 

validation of pointer dereferences by instrumenting the ori-
ginal source code using source-to-source transformations im-
plemented using the DMS Software Reengineering Toolkit 

and its C front-end supporting various C dialects, including 
GCC and Visual C.

Each translation unit  of  an application is  instrumented 
separately using the following basic steps:
• Preprocess  and  parse  the  source  code into  a  syntax 

tree,
• Perform name and type resolution over the syntax tree 

to create a symbol table,
• Normalize the syntax tree into a functionally equival-

ent simplified form of C,
• Instrument the normalized syntax tree using source-to-

source transformations, and
• Unparse  the  instrumented  syntax  tree  into  instru-

mented source code.
For each processed translation unit the instrumenter also 

augments a cache file containing information about the files 
used in the application,  the meta data for  global  variables 
needed or made available by the translation unit, the sizes of 
global array variables, and the sizes of flexible array mem-
bers of global struct variables. After all translation units of 
the application have been instrumented, this information is 
used to generate an auxiliary source file containing declara-
tions and missing initializers of meta data and an auxiliary 
header file containing the collected sizes of the arrays and 
flexible array members. The auxiliary header file is needed 
to perform proper out-of-bounds checks on these arrays and 
array members in translation units that do not explicitly spe-
cify their sizes.

1) Sample  Instrumentation  Rules: During  instrumen-
tation all pointer dereferences must be instrumented in order 
to  validate  the  well-definedness  of  the  respective 
dereferences and propagate the corresponding pointer meta 
data  when  necessary.  Using  the  DMS  Software 
Reengineering  Toolkit,  such  instrumentation  can  be 
achieved by modifying the (name and type resolved) syntax 
tree searching for  patterns describing pointer  dereferences 
and  replacing  these  with  appropriate  validating  and 
propagating  code  fragments.  Though  performed  on  the 
syntax  tree  level,  such  replacement  rules  are  actually 
specified  using  the  native  syntax  of  the  underlying 
programming language C embedded in a meta language for 
declaring rules and combining them to rule sets.

Figure 2 shows a transformation rule for dealing with as-
signments of the form id1 = &id3->id4 where  id1 is a 
variable of pointer type.

rule ReplaceAR2a4a1(id1:IDENTIFIER,id3:IDENTIFIER,id4:IDENTIFIER):expression->expression
  = "\id1 = &\id3->\id4"
 -> "(
      // compute pointer meta data for \id1
      pointer_meta_data_restrict(&\GetPointerMetaData\(\id1\), &\GetPointerMetaData\(\id3\), 
                                 &\id3->\id4, sizeof \id3->\id4), 
      // perform original assignment
      \id1 = &\id3->\id4
     )"
 if IsPointerObjectOrParameter(id1) /\ IsPointerObjectOrParameter(id3).

Figure 2. Instrumentation rule for id1 = &id3->id4.



The right hand side of the rule consists of two steps, first 
assigning the pointer meta data for the pointer to the member 
field to the pointer meta data associated to the target, which 
is computed by restricting the pointer meta data for the point-
er id3 to the address range of the field id4, and then execut-
ing the original assignment. This rule does not introduce any 
validation for pointer dereferences as the original code only 
computes the address of a field without dereferencing any 
pointer.

Figure 3 shows a transformation rule for dealing with as-
signments  of  the  form  *id1 = id3->id4 where  all  in-
volved variables and member fields are of pointer type.

The comments on the right hand side of the rule indicate 
the steps performed by the replacement of the original ex-
pression, consisting of first validating whether the target of 
the assignment can be written and whether the source of the 
assignment can be read, then copying the pointer meta data 
associated to the source pointer to the pointer meta data asso-
ciated to the target  pointer, which involves looking up the 
pointer meta data via the corresponding pointed-to objects, 
and finally executing the original assignment.

For local variables the address of which is taken, the in-
strumenter needs to create and “destroy” object meta data at 
appropriate points during program execution.

Figure 4 shows a transformation rule* for dealing with 
the break statement. This rule's application condition (im-
plemented by procedural code walking over the syntax tree 
and consulting the symbol table) checks whether terminating 
the nearest enclosing loop or switch statement ends the life-

* Note that when the rule is being processed all occurrences of the break 
statement  reference  the  same  syntax  tree  node;  which  is  the  break 
statement in the syntax tree for the source code being instrumented the 
left hand side of the rule successfully matched with.

time of a local object declared within the loop or switch 
statement for which object meta data may have been created 
during execution. If this is the case, the rule inserts the final-
izers necessary to “destroy” the object meta data associated 
to such local variables, ensuring that further accesses to these 
local  variables  through pointers will fail.  Similar rules are 
provided to cover other forms of jump statements.

CheckPointer uses a large number of rules* similar to the 
above ones to declare pointer meta data and object meta data 
where  necessary,  validate  pointers  that  are  being  derefer-
enced,  propagate  pointer  meta data  for  assignments,  mark 
object  meta  data  for  local  variables  as  “destroyed”  when 
their  respective  lifetimes  end,  and  add  function  prologues 
and epilogues to create and destroy call stack meta data.  The 
orchestrated application of these rules ensures that the result-
ing instrumented code is well-formed and performs the de-
sired memory access validation checks when compiled and 
executed.

2) Wrappers for Binary Libraries: The instrumentation 
added by CheckPointer assumes that the whole application 
is instrumented properly to manage the necessary meta data. 
One way to achieve this is by instrumenting the complete 
source code of the application.  However, in practice, this is 
often  not  possible,  as  the  application  uses  functionality 
provided by the C standard library, by the operating system, 
and by third party libraries, which often only come in binary 
form with  a  description  of  its  available  interfaces.  Thus, 
instrumented  source  code  has  to  interact  with  non-
instrumented library code.

In general, the instrumented source code can be directly 
linked with the non-instrumented library code as the function 
signatures are not changed by the instrumenter. Thus, point-
ers passed into functions provided by non-instrumented lib-
raries, as well as pointers received from functions (by means 
of the function's return value or its side-effects) in these lib-
raries do not pose any problems for the instrumented source 

* The number of rules is positively correlated with the number of differ-
ent forms of statements, in particular assignments involving pointers, 
remaining after normalizing the syntax tree into a functionally equival-
ent simplified form of C.  The more forms are remaining,  the more 
rules are needed instrument all pointer usages.  However, in the ab-
sence of any other optimizations, more remaining forms allow better 
instrumentation code being produced.

rule ReplaceAR3a5a1(id1:IDENTIFIER,id3:IDENTIFIER,id4:IDENTIFIER):expression->expression
  = "*\id1 = \id3->\id4" 
 -> "(
      // check for *\id1 being writable
      pointer_meta_data_check_write(\id1, sizeof *\id1, 
                                    &\GetPointerMetaData\(\id1\), \GetPosition\(*\id1\)),
      // check for \id3->\id4 being readable
      pointer_meta_data_check_read(&\id3->\id4, sizeof *&\id3->\id4, 
                                   &\GetPointerMetaData\(\id3\), \GetPosition\(\id3->\id4\)),
      // propagate pointer meta data for \id3->\id4 to pointer meta data for *\id1
      *pointer_meta_data_lookup(\GetPointerMetaData\(\id1\).object_meta_data, \id1)
        = *pointer_meta_data_lookup(\GetPointerMetaData\(\id3\).object_meta_data, &\id3->\id4),
      // perform original assignment
      *\id1 = \id3->\id4
     )"
 if    IsPointerObjectOrParameter(id1) /\ IsPointerExpression("*\id1") 
    /\ IsPointerObjectOrParameter(id3) /\ IsPointerMemberField(id4).

Figure 3. Instrumentation rule for *id1 = id3->id4.

private rule FinalizersForBreak
               (ss:statements,s:statement)
             :statement->statement
    = "{ \ss break; }" 
   -> "{ \ss
         \CreateFinalizersForBreak\(break;\);
         break;
       }"
   if DoesBreakRequireFinalizers("break;").

Figure 6. Instrumentation rule for break statement.



code as long as they are handled as opaque data. However, 
such  pointers  are  not  validated  when  dereferenced  from 
within  the  non-instrumented  libraries.  The  instrumented 
source  code  also  cannot  dereference  pointers  received  by 
non-instrumented  libraries,  as  proper  meta  data  for  these 
pointers is not available.

These limitations can be overcome by producing wrap-
pers  for  the  non-instrumented  functions.  In  general,  such 
wrappers have three major phases to safely simulate the ori-
ginal function:
• Validate that calling the original function is safe:

The function arguments and any other program state 
are checked to validate that calling the original func-
tion will  not  cause  any memory access  errors.  This 
usually involves reading and checking the meta data 
associated  to  the  function  arguments  and/or  other 
global objects.

• Call the original function:
The original function is called to ensure that the core 
functionally of  the call  is  preserved  by the wrapper 
function.

• Update meta data to reflect the effects of the original  
function:
The pointer and object meta data tracked by Check-
Pointer to perform memory access validation must be 
updated to reflect the effects of the original function 
on such data. Dependent on the function this may in-
clude creating, reading, updating, and/or deleting such 
meta data.

Further complications arise when an instrumented func-
tion is  to  be  passed  as  a  call-back  to  a  non-instrumented 
function. In such cases, a wrapper needs to be passed instead 
that updates meta data if necessary, creates appropriate call 
meta  data  before  calling the actual  instrumented  function. 
and destroys the call meta data afterwards. If necessary, this 
may be followed by some additional validation of meta data 
to ensure that continuing execution in the caller is safe.

CheckPointer provides an interface to write such function 
wrappers  by  providing  means  to  validate  pointers  against 
meta data and update meta data.

This interface has been used to implement wrappers for 
the standard C library functions, including the memory copy 
functions  memcpy and  memmov,  which require  copying  all 
pointer meta data within an address range to corresponding 
pointer meta data in another address range from the object 
meta data of an object to the object meta data of the same or 
another object.

Similarly, the interface has also been used to implement a 
wrapper for the begin thread call in multi-threaded applica-
tions. This wrapper performs some initial setup and instead 
of starting a thread with the desired (instrumented) function 
starts the thread with a wrapper function that first establishes 
an appropriate context for meta data management, then calls 
the desired (instrumented) function, and finally upon its ter-
mination marks the object  meta data for thread-local  vari-
ables as being “destroyed”. The wrapper for the end thread 
call is somewhat more involved as it needs to mark as “des-
troyed” not only the object meta data for thread-local vari-
ables  but  also for  any local  variables  along the call  stack 
starting from the root  function of the thread.  This can  be 
achieved by the instrumented source code tracking the object 
meta data for local objects and thread-local variables in ap-
propriate lists associated to the call stack meta data, which 
then can be accessed by the begin thread and end thread calls 
when needed.

The  wrapping  approach  to  thread-local  variables  and 
thread execution management relies on these capabilities be-
ing provided  in  form of  library functions.  However,  such 
capabilities  are  not  standardized  and  may be provided  by 
other means for a particular compiler or platform.  E.g. gcc 
provides a  __thread keyword while Visual  C provides a 
__declspec(thread) phrase as a storage class specifier to 
declare “global” or “static local” variables as being thread-
local. In general, CheckPointer may need to be modified to 

01: #include <windows.h>
02: #include <process.h>
03: #include <stdio.h>
04:
05: __declspec(thread) int tls_variable;
06: int *global_pointer;
07:
08: unsigned int __stdcall set_global_pointer(void *args) {
09:   global_pointer = &tls_variable; // set global pointer to thread-local variable
10:   *global_pointer = 1; // well-defined dereference of pointer to thread-local variable
11:   return 0;
12: }
13:
14: int main() {
15:   //printf("Global pointer to thread local variable in current thread\n");
16:   set_global_pointer(0);
17:   *global_pointer = 2; // well-defined dereference of pointer to thread-local variable
18:   //printf("Global pointer to thread local variable in terminated thread\n");
19:   HANDLE thread = (HANDLE)_beginthreadex(NULL, 0, set_global_pointer, NULL, 0, NULL);
20:   WaitForSingleObject(thread, INFINITE); // wait for thread to terminate
21:   CloseHandle(thread);
22:   *global_pointer = 3; // illegal dereference of escaped pointer to thread-local variable
23:   return 0;
24: }

Figure 4. Erroneous multi-threaded C program.



understand such compiler or platform specific constructs. Its 
current implementation already handles the above mentioned 
constructs  when  processing  source  code  in  the  respective 
dialects, and utilizes these storage class specifiers to declare 
variables for tracking thread-local meta data.

C. Examples
CheckPointer  has  been  successfully  applied  to  various 

test cases and a commercial compiler for a proprietary paral-
lel programming language developed in C that has been in 
continuous use for  over a  decade.  CheckPointer  itself  has 
been implemented in this parallel programming language and 
compiled with that compiler.

1) Escaped  Pointer  to  Thread-local  Variable: The  C 
program in figure 5 contains one of the test cases used for 
validating  CheckPointer.  In  this  test  case,  a  pointer  to  a 
thread-local  variable  is  stored  in  a  global  variable  which 
later  is  dereferenced  after  the  thread  the  variable  was 
associated to terminated.

Compiled normally with Visual C++ 2010 Express in de-
bug mode and executed in the  debugger*, this test case fin-
ishes execution of the main function apparently successfully, 
but afterward causes a breakpoint exception in an NT kernel 
function called from

msvcr100d.dll!_free_base(void *pBlock)
  Line 50 + 0x13 bytes
The only suggestion about the error given by the debug-

ger is that the error “may be due to a corruption of the heap”, 
without providing any further help in pinpointing the loca-
tion of the error.

If instead the test case is instrumented using CheckPoint-
er, the instrumented source code compiled with Visual C++, 
and the  resulting binary executed,  the following output  is 
produced:

*** Error: Dereference of dangling pointer.
    in function: main, line: 22, file Example.c
The error report clearly indicates the location of the erro-

neous pointer dereference in the source code before the as-
signment can do any damage to internal data structures.

2) Compiler for a Parallel Language: CheckPointer has 
been  applied  to  a  (single-threaded)  compiler  for  a 

* Note that if executed outside the debugger, the test case, though com-
piled in debug mode, appears to finish successfully without producing 
any error message at all.

proprietary parallel programming language, called 
PARLANSE [1]. This compiler has been used continuously 
since  over  a  decade  to  compile  parallel  programs. 
Applications programmed in PARLANSE and successfully 
compiled with the compiler include the DMS Reengineering 
Toolkit,  including  the  compiler  infrastructure  and  the  C 
front-end  used  by  CheckPointer,  and  in  particular 
procedural parts of CheckPointer itself.

The compiler's source code, constisting of about 110,000 
lines of C code, has been instrumented with CheckPointer, 
the instrumented source code compiled with GCC4, and the 
resulting binary used to compile CheckPointer itself, produ-
cing the output shown in figure 6.

Upon  further  investigation  of  the  error  locations,  both 
cases  turned out to be out-of-bounds accesses  to  an array 
embedded in a larger struct, although the memory accessed 
was still within the enclosing struct. (The compiler worked 
by accident.)

D. Related Work
There are various tools for detecting spatial or temporal 

pointer usage errors, or a combination thereof, at run-time. 
Such tools use different approaches for instrumenting the ap-
plication:
• Source code instrumentation consists of adding run-

time checks into the source code, in general independ-
ent of a particular compiler or target platform. The res-
ulting  instrumented  source  code  is  processed  by  a 
compiler after successful instrumentation.

This approach is used by CheckPointer.
CCured [8] also uses source code instrumentation, 

reducing overhead for tracking meta data and validat-
ing pointer usage by applying optimizations based on 
an  extension  of  C's  type  system.  However,  CCured 
uses fat pointers causing incompatibility issues in real 
code due to memory layout changes of compound data 
types,  while CheckPointer avoids layout  changes by 
keeping meta data in separate data structures. CCured 
ignores  explicit  deallocation  of  memory;  instead  it 
uses  a  garbage  collector  to  reclaim  heap-allocated 
memory and disallows pointers to local variables be-
ing stored in heap-allocated memory and global vari-
ables. 

PARLANSE Compiler V19.16.41
*** Error: Dereference of pointer is out of bounds.
    in function: ReadNextInputBlock, line: 697, file P0File.c
    called in function: SetUpINCLUDEFile, line: 593, file: P0File.c
    called in function: SemIncludeFile, line: 27437, file: P0Compiler.c
    called in function: LRParser, line: 8256, file: P0Compiler.c
    called in function: CompileSourceFile, line: 8824, file: P0Compiler.c
    called in function: main, line: 9254, file: P0Compiler.c
*** Error: Dereference of pointer is out of bounds.
    in function: NextFileByte, line: 718, file P0File.c
    called in function: NextSourceByte, line: 867, file: P0File.c
    called in function: GetNextTerminal, line: 6556, file: P0Compiler.c
    called in function: EnsureHoldingCurrentToken, line: 7833, file: P0Compiler.c
    called in function: LRParser, line: 8089, file: P0Compiler.c
    called in function: CompileSourceFile, line: 8824, file: P0Compiler.c
    called in function: main, line: 9254, file: P0Compiler.c

Figure 5. CheckPointer error messages for an instrumented compiler.



MSCC [14] is another system using this approach, 
and  is  implemented  using  CIL  [9] as  a  foundation, 
transforming a simplified form of C within CIL. Like 
CheckPointer, MSCC does not use fat pointers but in-
stead uses shadow data associated with pointers and 
objects. However, MSCC only allows limited casting 
between pointers  of  “related”  struct  types;  and does 
not  check  for  out-of-bounds  errors  on  sub-objects. 
MSCC  does not support multi-threaded programs.

• Compile-time  instrumentation adds  run-time  checks 
while the source code is being compiled, usually ex-
ploiting internal data structures and optimizations used 
by the compiler.

SoftBound  [6] and  CETS  [7] use  this  approach, 
with SoftBound providing spatial error checking and 
CETS providing temporal error checking. These tools 
are  implemented  using  the  LLVM  compiler  frame-
work  [4] and operate on LLVM's typed single static 
assignment  form.  SoftBound uses  pointer  meta  data 
similar  to  CheckPointer,  tracking  pointers  stored  in 
memory using a hash table or a shadow space. CETS 
uses a generation key similar to CheckPointer to detect 
dangling pointers. The CETS prototype does not sup-
port multi-threaded programs.

MemSafe  [13] is another tool using compile-time 
instrumentation. It  uses meta data similar to Check-
Pointer.  However,  while  CheckPointer  uses  separate 
maps from pointers to pointer meta data for each vari-
able  or  heap-allocated  object  containing  pointers, 
MemSafe uses a single global map. MemSafe utilizes 
a whole program data-flow for pointers graph to per-
form various optimizations reducing execution over-
head.

Fail-Safe  C  [11] uses  fat  pointers  similar  to 
CCured but alleviates layout  change issues  by map-
ping from virtual to physical byte offsets when access-
ing memory where necessary. Local variables the ad-
dress  of  which  are  taken  are  moved  into  the  heap. 
Garbage collection is used to avoid dangling pointers 
to heap allocated memory, though memory is marked 
as non-accessible when “freed”. Wrappers are needed 
to interact with library functions that are not compiled 
with Fail-Safe  C to convert  between  the  fat  pointer 
representation and the normal  representation.  Unlike 
CheckPointer, Fail-Safe C does not check for out-of-
bounds errors on sub-objects.

• Binary instrumentation defers adding run-time checks 
until after compiling the application into a binary, thus 
does not suffer from source code for libraries not be-
ing available.  However,  high-level  information from 
the source code, e.g. the size and bounds of member 
fields in a struct, are in general not available in binary 
executables;  thus tools based on binary instrumenta-
tion cannot detect out-of-bounds errors for such mem-
ber fields.

Purify  [3] adds  binary instrumentation on object 
files after source code compilation but before linking. 

It checks for pointer usage errors only for heap-alloc-
ated objects.

Valgrind [10] uses on-demand dynamic recompila-
tion of  small  code  blocks in  binary executables,  by 
first translating a block of machine code into an inter-
mediate representation, then allowing plug-ins to in-
strument this internal  form, and finally converting it 
back to machine code that is then being executed. An 
available plug-in, called Memcheck, adds instrumenta-
tion for pointer  usage checks.  Like Purify,  Valgrind 
does not detect out-of-bounds errors for global or local 
variables. Valgrind supports multi-threaded programs 
but serializes execution to ensure that only one thread 
is running at a time.

E. Conclusion
CheckPointer is a memory access validator for detecting 

spatial and temporal pointer usage errors in multi-threaded C 
applications  at  run-time.  The  tool  is  implemented  using 
source-to-source  transformations  using  the  DMS Software 
Reengineering Toolkit and its C front-end as a basis. The in-
strumented source code produced by CheckPointer from the 
original source code keeps track of meta data about pointers 
and  objects  and  checks  all  pointer  dereferences  for  well-
definedness, immediately reporting an error before it can do 
any actual damage. Functions for which no source code is 
available  are  dealt  with  by  manually  producing  wrappers 
simulating the effects of the function on the meta data.

As CheckPointer intercepts  all memory allocations and 
deallocations to manage meta data for heap allocated objects, 
the  instrumented  code  can  be  configured  to  report  all 
memory locations that are still being allocated at the end of 
application execution.  Such information can be utilized to 
check for memory leaks.

The  current  implementation  of  CheckPointer  could  be 
improved  by  using  static  analysis  to  eliminate  redundant 
meta  data  updates  and  checks  in  the  instrumented  source 
code, significantly reducing the execution time of the instru-
mented application. Such redundant checks include pointer 
dereference  checks  dominated  by  other  identical  pointer 
dereference checks,  and pointer dereference checks for ac-
cessing multiple pointed-to fields of a single struct that could 
be  summarized  into  a  single  check  across  all  fields.  The 
DMS Software Reengineering Toolkit and the C front-end 
provide supporting infrastructure and analyses to implement 
such optimizations.

Elapsed  time  could  also  be  reduced  by offloading  the 
meta  data  tracking  and  pointer  usage  validation  from the 
main thread to auxiliary parallel threads [5]. This is particu-
larly useful for a single-threaded application that is being ex-
ecuted on a multi-core platform.

CheckPointer currently assumes that direct and indirect 
function calls are used with properly typed arguments. How-
ever, C compilers in general  do not enforce this for direct 
function calls across translation units, nor for indirect calls 
through  function  pointers  even  within  a  single  translation 
unit. In order to catch such errors, CheckPointer could be ex-
tended to keep track of static and dynamic type information 



and check for compatibility of such information where ne-
cessary to ensure safe execution.

For availability of CheckPointer see [12].
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