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Abstract

Since the failure of a high integrity software system has a huge cost, it is important to
develop reliable, trustworthy software for such systems that is very unlikely to fail
due to coding errors. This high level of software reliability has to be preserved for the
life-time of the system, even as its requirements and implementation change. One
method for achieving this level of reliability is to formalize the software development
process, and provide mechanical tools to support it, to ensure that no process errors
are induced in the final code developed from a formal specification. Mechanical
modification of the steps for constructing the system then can ensure that this high
degree of reliability is preserved. We sketch a tool, the Design Maintenance System
(DMS), which we are constructing. DMS provides the type of support required to
perform these activities mechanically with interactive support, and discuss how this
tool can help constructing and maintaining reliable, trustworthy software for high in-
tegrity systems.

1. Introduction

Software-based systems can be found in more and more application areas, including high-risk areas where a
system failure induces huge costs, e.g. serious injury, loss of life, or destruction of resources. For such high-
risk application areas it is important to construct and maintain trustworthy software with an extremely small
probability of an error occurring that would cause a serious system failure.

In traditional, i.e. current, software engineering practice informal requirements are somehow converted into
an informal and semi-formal specification using generic domain notations without underlying precise se-
mantics from which the program then is constructed manually. The final program is validated by performing
tests using manually derived test cases. In practice, the delivered software will have to be changed due to
changed context, requirements or errors actually found in the program. Maintenance is then done by modi-
fying the code manually, often without modifying the specification as well.

This approach to software construction has several obvious drawbacks:

• The gap between the informal requirements and the specification in generic domain notations is too
large. Thus, it is difficult, if not impossible, to validate the correctness and completeness of the speci-
fication.

• The specification does not have a precise semantics. Thus, it is ambiguous, i.e. subject to different
interpretations by different engineers that are involved in the construction of the software.

• There is no precise relationship between the specification and the final program. Information about
how the specification is realized in the program or why it is realized that way cannot be found or, at
best, is documented informally. This makes it impossible to trace the impact of the requirements to
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the construction process and the final program, or to trace an error found in the program back to the
requirements or to a design decision.

• Testing the final program with manually or even automatically constructed test cases is neither ex-
haustive, nor can it be used to prove the program is error free. Testing can only show the presence
of errors.

• Maintaining the software by modifying the code is difficult and often introduces new errors into the
program. Failure to reflect changed requirements in the specification also leads to an increasing gap
between the original specification and what the code really does.

The difficulties with the conventional software method make the reliability of its products highly suspect,
especially if the software in question has a long lifetime and is subject to the usual pressure for many
changes over time. Thus, conventional methods seem like a poor approach for constructing and maintaining
reliable software systems for high-risk areas.

The fundamental basis for overcoming the deficiencies of the conventional method is to have a specification
of the requirements using domain notations that are specific for the problem area, thus reducing the gap
between the informal requirements and the specification. Giving the domain notations a precise underlying
semantics ensures that there is no ambiguity in interpreting the, now formal, specification. Analysis and
simulation tools based on such formal domain semantics then can support the validation of the specification
using terms understandable to the specifiers.

Such a formal specification of the requirements then would theoretically allow proof of the correctness of
the program with respect to the specification. However, in general the specification as well as the final pro-
gram code are large and there are many hidden design decisions made during the manual construction of the
program. Such hidden design decisions have to be recovered from the code and encoded in the proof. This
is as hard, if not harder, than designing the program in the first place. Program scale thus makes it essen-
tially impractical to carry out these proofs in an economical fashion. To alleviate the recovery problem, we
have to reduce the gap between the formal specification and the program. This can be done by introducing
intermediate specifications that contain smaller, easy to detect design decisions. Ideally, these design deci-
sions are so small that their respective proofs are trivial.

A transformational approach to software construction essentially provides us with such small design deci-
sions in form of transformations (cf. [Nei84, Par90]). If the transformations have been proven to be (func-
tionality) correctness-preserving in advance, then the program, constructed by applying the transformations
successively, then is correct by construction with respect to functionality. The transformations then repre-
sent decisions on how to implement function. Satisfaction of the non-functional part of a full specification
(see [Bax90]) is a consequence of “performance side-effects” of the chosen transformations. To achieve de-
sired performance effects, one must have and use explicit performance criteria to select transformations (cf.
[McC87]). The selection of (a set of) transformations to achieve a performance effect represents a decision
on how to achieve performance. The applied transformations together with their rationale for application
exactly describe the relationship between the specification and the program.

The transformations and their rationale can be captured in a transformational design (see [Bax90]). Such a
design record allows tracing requirements from the specification to the code, and tracing back from code
fragments to the specification and/or the transformations (and their rationale) that are responsible for de-
riving that piece of code. The transformational design can also be used to guide re-implementation of the
software when the requirements change, by reusing recorded design decisions that are still valid rather than
develop the new implementation from scratch.

Capture of a transformational design enables the whole software construction and maintenance process from
the specification to the program to be supported by a semi-automatic system. Construction and modification
can be performed incrementally to adapt the software system to changed requirements (cf. [Bax90]). This
avoids process errors.

Effective use of such a semi-automatic system requires considerable infrastructure in the form of predefined
domains, each capturing knowledge about some problem domain or some implementation technology do-
main (database, graphical user interface, file systems, communications, etc.). Each domain consists of nota-
tions, concepts, and transformations relevant to that domain as well as maps to lower-level domains. To ac-
quire this domain knowledge is expensive.
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Unfortunately, even for high-risk applications there is only a limited budget available for constructing the
(software) system. Therefore, as there is a strong relationship between the reliability of a system and its
cost, a high cost of knowledge acquisition means a low reliability of the system developed within this
budget limit (cf. Figure 1). It is unfortunate that reducing
knowledge acquisition also leads to either poorly per-
forming or unreliable systems.

Successful risk reduction consequently requires reduction
in the cost of domain knowledge acquisition used by
tools. This can be achieved by amortizing the cost of
knowledge acquisition over many different applications
systems and by having a highly agile tool for supporting
the development of domains.

In the sequel we give an overview of DMS, a mechanical
tool that supports the incremental construction and maintenance of large application systems as well as do-
mains. We then discuss how such a tool could help developing trustworthy software for high integrity sys-
tems in high-risk areas.

2. The Design Maintenance System (DMS) — An Overview

DMS (cf. [Bax95]) is fundamentally a transformational synthesis system, i.e. a semi-interactive system for
deriving code from specifications by repeatedly applying transformations. The transformation knowledge is
organized around knowledge
clusters called “domains”.
DMS captures a transforma-
tional design, and aids in the
revision of an application (see
Figure 2) using the captured
design as a guide (see [Bax90],
[Bax92]).

Using this system, software
could be constructed by first
developing a “functional”
specification of the software
together with performance
specifications that describe the
non-functional requirements
(e.g. time complexity of algorithms to achieve and/or the implementation language to use). The program
code then is derived by successively applying transformations that are semi-automatically selected from a
repertoire of domains to approach and finally realize the performance specifications while satisfying the
functional specification. The performance specifications serve as the justification for the implementation
decisions made, i.e. the transformations applied.

A major practical problem is that during the life-time of a software system its requirements are constantly
changing (see [Boe81, Gui83]), often even while the software is still under construction. DMS is intended
specifically to address this issue. Repeatedly performing an in general huge derivation is expensive both
computationally and in terms of interactive steps (which no one wants to revisit, especially if their outcome
does not change). It is desirable to reuse as much of an existing derivation as possible.

Thus, DMS records the transformations applied, their point of application, and the rationale for applying
them (i.e. the performance requirements that are approached). Additionally, DMS builds on a theory of
transformational maintenance to revise the captured transformational design according to formal changes
made in the functional specification as well as in the performance specifications. This allows DMS to reuse
and revise major parts of a derivation for the changed system specification often without a need to revisit all
the decisions. In particular, this approach avoids the need to ask the software engineer to revisit unaffected
interactive decisions. A sample of this process applied to a data processing program can be found in
[BP97].
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2.1 Domains
A significant number of different notations, transformations, methods, and software components are needed
to construct and maintain large systems. The SINAPSE system (see [Kan91]) for the generating mathemati-
cal modeling codes had several thousand chunks of synthesis knowledge, used for a narrow domain and
producing relatively small (5K source lines of code) programs. It is not practical to manage such complex
information as an amorphous collection. In DMS this knowledge is organized into a network of domains
(cf. [Nei84]).

Each domain consists of at least the following parts:

• A specification (or program) syntax that allows DMS to read (i.e. transform the syntax into an inter-
nal form), process (the internal form), and display (i.e. transform the internal form back to the syn-
tax) documents written in the domain specific notation.

• Parameters, which are uncommitted details of a domain having properties dictated by the domain, in
the same spirit as parameters in algebraic specifications. (For a parallelism domain, the parameters
may represent arbitrary side-effecting actions).

• An (optional) machine-interpretable semantics describing the meaning of documents written in that
notation. Such a semantic description provides the basis for domain independent analysis capabilities
such as symbolic simulation and deriving specification properties. Semantics are also a necessary
precondition for being able to support mechanical proof the correctness of the transformations within
the domain as well as between domains although this is not required to use DMS.

• Domain specific transformations that can be classified as
• Optimizations that can be used to simplify or elaborate a specification within the domain,
• Refinements that describe how to transform concepts of the domain to concepts of other do-

mains at a lower level of abstraction, and
• Jittering transformations that modify the specification in order to make transformations of the

other two classes applicable.

• Methods that comprise rules to apply certain (sets of) transformations. Such methods tell DMS how
to select groups of transformations to synthesize codes by providing a semi-procedural plan to ap-
proach, achieve, or preserve performance properties. Often methods are non-deterministic plans that
use refining transformations to map a configuration of concepts (i.e. a set of related concepts together
with their relations) in one domain into another configuration in a domain at a lower level of abstrac-
tion.

• Reusable, explicitly defined software components, each component consisting of a set of methods
that can be applied to the same (or a similar) abstract concept. Such components are more reusable
than conventional code-based components as they tailor themselves to the context in which they are
used. This is especially useful for component compositions which occur naturally when an abstrac-
tion is refined into other lower level abstractions, each of which has its own components that may be
applied to obtain even lower level abstractions. The explicit definition of such components allows
domain engineers to compile their knowledge into the domain definition, which in turn allows appli-
cation engineers, who usually have less knowledge about the domain, to take advantage of this
knowledge.

• Analyzers that measure “interesting” properties of a specification (or program). Such analyzers could
e.g. compute performance values of the specification or, even more important, information that is
needed in preconditions of transformations.

• Procedures that provide efficient implementations for complex methods or software components
(which may but need not be included explicitly as methods and software components, respectively)
or provide additional functionality (e.g. test case generation).

A specification written in one domain can be repeatedly refined into specification(s) in other domains to
achieve an implementation, under the guidance of domain methods and interaction with the software engi-
neer. (We call this forward engineering.)



2.2 Domain Networks
The domains are related by virtue of specifications from abstract domains being refinable to specifications
(or programs) in domains of lower level of abstractions. This implicitly establishes a domain interconnec-
tion network (an example of which
can be found in Figure 3) with specific
application domains at the most ab-
stract level, generic application do-
mains, computer science domains, and
execution model domains at interme-
diate levels of decreasing abstraction,
and target execution languages at the
lowest level(s) of abstraction. DMS
provides a collection of reusable do-
mains for the lower levels of abstrac-
tion (gray area) as the cost of acquir-
ing these can be amortized across
many applications. This allows do-
main engineers to concentrate on de-
fining the value-adding generic and
specific application domains that are
defined and implemented in terms of
other more implementation-oriented
domains.

This domain network provides all the
knowledge needed for constructing
software mechanically. It provides application domain specific notations to describe the functional and per-
formance specifications, software components, methods, and transformations to derive lower level (func-
tional and performance) descriptions from higher-level descriptions, and analyzers to validate and simulate
descriptions on different levels of abstractions.

The domain knowledge in the network can be heavily (re)used in the construction process of many different
software systems, and can consequently be well tested. Most of the errors that originally might have been
compiled in the domain knowledge are eliminated over time. This contributes to higher reliability of newly
constructed systems (re)using these domains, as well as to systems already constructed with the possibly er-
roneous domain knowledge via maintaining them.

2.3 Design Capture, Reuse and Incremental Modification
As already mentioned briefly DMS records the automatically chosen as well as the interactively enforced
steps, i.e. software components, methods, and transformations that have been applied successfully during
the software construction process together with the rationale that led to applying them. DMS also records
how an overall possibly complex performance specification is broken into smaller and simpler subspecifi-
cations over in general smaller regions of a functional specification. This recorded information forms the
design history of the software system. We consider this design history as the product of the software con-
struction process whereas the resulting code is “only” a byproduct. The design history provides a complete
explanation of the code byproduct.

Capturing the design history is important for explanation, traceability and to save effort during later soft-
ware maintenance. Both the software engineer and DMS work hard to discover which software components,
methods, and transformations to apply, to determine exactly where to apply them, and to achieve the per-
formance requirements. Redeveloping even only a small fraction of an application is expensive.

Many, especially small, modifications to the software specification (and, presumably less-frequently, to the
domain definitions) that have been used during the construction process usually have only a small impact on
the code. It is therefore worthwhile to incrementally modify, i.e. revise, the design rather than to reconstruct
the code from scratch again. DMS provides this capability.
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The DMS revision mechanism for the design history can take advantage of the ability of transformations to
commute application order in the design history (cf. [Bax90]), and the flexibility of methods and especially
software components to adapt to changes in the concepts and/or their performance requirements. In essence
DMS tries to preserve as much of the design history (including the interactively chosen steps) as possible
and reorders, replaces, or removes transformation steps that are no longer applicable.

The result of the revision process is a partial design history for the modified software specification. By
switching over to a transformational software construction process this design history can be completed to
produce a new implementation. DMS may be able to use the steps removed from the design history to guide
the construction process by proposing analogous transformations. In the course of repairing a partial his-
tory, DMS uses the same tested domains it uses for pure forward engineering.

The newly completed design history has the desired modified code as an outcome, and can be revised again
by the same process for future modifications.

2.4 Reverse Engineering to Maintain Legacy Systems
Ideally, all software would be constructed and maintained within a system like DMS. However, there exist
many legacy systems for which one often has only the system code with some informal, inaccurate docu-
mentation. Legacy systems are by definition successful, and since successful systems suffer a continual de-
mand for enhancement; they have to be maintained. Thus, DMS makes a concession to reality and provides
support for reverse engineering legacy systems recover the lost design, or at least a plausible design.

To obtain such a possible design history DMS interactively runs its engine backwards by applying the trans-
formations, methods, and software components in reverse direction (see [BM97]). DMS tries to recognize
more concrete realizations of concepts and to abstract them to their respective concepts on a more abstract
level of description. The software engineer participates as guide, arbiter among proposed abstractions, and
on-line domain engineer to provide missing domain abstractions and/or implementation knowledge. The
recognized steps are recorded as leading from the abstract concept to the concrete realization. They can be
revised to maintain the system specification obtained by the reverse engineering effort.

It is not necessary to recover the entire design to maintain an existing system. One only needs to recover
those parts that will be affected by the changes to be made. It is further sufficient to raise the level of ab-
straction only as far as needed for the software engineer to perform the changes reliably.

2.5 Scale
Many software systems consist of hundreds of thousands of lines, some even of millions of lines of code.
For DMS to be useful, it has to scale correspondingly in several aspects:

• the size of the application system
• the number of engineers constructing, respectively maintaining the system
• domain knowledge acquisition

DMS faces these scale issues by several means:

• Incrementality in the modification process.

• DMS is implemented in PARLANSE, a parallel processing language. PARLANSE provides efficient
support for forking and synchronization of small-grain parallelism as well as sophisticated software
engineering support such as modules, abstract types, and robust exception handling. This provides
computational power to support the expensive symbolic processing involved.

• Design histories are not treated as linear histories of transformations steps between specifications but
rather as non-linear networks of dependencies between effects of transformations. Thus, major frac-
tions of the design history need not be revisited for small changes of the software specification.

• DMS is a client-server system allowing the software engineers to work on their workstations whereas
the design history database is held on a server. An individual engineer implicitly locks those parts of
the design history he may be changing. For large systems these are small portions allowing multiple
engineers to work with small interference.



• Large application systems are coded using many different languages. DMS supports this by its agility
in handling domains.

• Domains are themselves definable and testable within DMS. This aids knowledge acquisition and
validation.

3. DMS–Support for High Integrity Software Development

In previous sections we provided a short overview of a sophisticated mechanical tool for the construction
and maintenance of software. Such a tool can support the development of trustworthy software for high in-
tegrity systems by several means:

• Specification in domain terms, enabling access by non-technical domain experts, reducing encoding
errors and easing specification inspection.

• Use of domain semantics and analyzers, enabling specifiers to validate behavior or properties at
various stages of implementation, and enabling off-line verification of critical components.

• Modularization and (re)use of layers of domain (implementation) knowledge, simplifying develop-
ment and amortizing the knowledge acquisition cost required to capture or develop reliable compo-
nents.

• Traceability from specifications to code, enabling fault analysis and reliable software modification.

We discuss each of these topics in more detail.

3.1 Specification in Domain Terms Reduces Modeling Errors
DMS allows the use of arbitrary domains with their specific notations for specifying a software system.
Choosing a domain notation that is close to the actual need, i.e. close to the “natural” model that has to be
specified, reduces the number of errors that are made during analyzing and describing the requirements and
increases the chance to find
possible specification errors
early. Consider e.g. the
(nearly) self-explanatory
specification of a produc-
tion cell (with a three stage
conveyor belt) given in Fig-
ure 4 (ignore the gray patch
for now). It should be easy
to imagine the actual physi-
cal production cell. This
specification is intended to
describe (a system of) con-
troller(s) that ensures that the production cell eventually and continuously produces the desired stream of
output parts provided it gets an acceptable stream of input. The specification is considered consistent, if and
only if there exists such a controller.

3.2 Domain-level Semantics/Analysis Enables Early Problem Detection
For such abstract domains it is possible to associate a machine-interpretable semantics for its notation.
DMS supports describing the domain semantics in several different ways to accommodate the needs for the
specific domain:

• Transformational semantics (“equivalence” transformation into another “lower level” domain having
a machine-interpretable semantics)

• Denotational or algebraic semantics,
• Operational semantics

Having a domain specific simulator, or a machine-interpretable semantics for the domain with a generic
symbolic simulator, enables simulation of the specification. Using such a simulator, a software engineer
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and/or domain specialist can observe and validate the specification’s behavior by symbolically “running”
the specification. In our example the domain semantics could be described by using denotational semantics.
A simulation then likely would show that the production cell may not be able to continue its work, e.g. if the
producer provides three squares one after another.

Providing other domain specific analyzers, or applying a generic analyzer again using a machine-
interpretable semantics for the domain enables the analysis of certain properties of a specification with the
goal of validating it. As an example, a liveness check could determine whether each component of the pro-
duction cell eventually and continuously gets input parts necessary to perform its work and whether it con-
tinuously produces an output part. This again is only possible under certain conditions the producer has to
satisfy.

Both simulation and analysis help validating the specification, and thus aid the detection of potential errors
early in the software development process, which reduces the overall cost for the software construction.

3.3 Domain Layers Simplify Implementation and Increase Robustness
DMS refines specifications through intermediate domains ultimately into implementation domains. The
domain interconnection network modularizes the (DMS transformational) development problem. The
smaller differences between different levels of descriptions for the system makes the whole process easier to
mechanize and easier to perform.

Each of these domains come with a possible semantics and/or simulator procedures/analyzers. This enables
analysis of partially-implemented specifications. Thus, potential errors in the specification and/or develop-
ment steps chosen may detected earlier rather than later.

A suitable intermediate domain for our example of a production cell would be a domain of colored Petri
nets (cf. [HD95]) which is parameterized by the colors for the states and transition conditions. With such a
domain and suitable domains for the colors the three stage conveyor belt could be realized by the Petri net
as depicted in Figure 5 (where p, q, and r denote the
state of the respective conveyor stage). The con-
troller triggers the belt to move forward only if the
first two sections of the belt are ready, and certain
conditions are satisfied that ensure the overall sys-
tem continues in a safe and live state, i.e. that no
part falls off the conveyor belt and that the whole
system can continue permanently (provided the con-
veyor belt is fed appropriately by the producer).

The final implementation of the controller may have
to be written in C. For the conveyor belt this code
may look as depicted in Figure 6, in which the Petri net has been implemented as a polling device, and the
safety and liveness conditions have been folded into the code. Analysis (e.g. for safety) even on this low
level implementation may detect errors that are difficult to detect by testing alone.

The refinement steps from more abstract domains to more concrete lower level domains are done by apply-
ing transformations, methods, and software components to the system description mechanically. This en-
sures that there are no process errors during construction of the code. The code is correct the first time and
there is no error reinjection caused by making design decisions.

For our abstract production cell domain we would expect to see transformations and methods that refine the
abstract components (e.g. N-stage conveyer belt and robot together) with their relationships into a colored
Petri net. The refined components have a controller triggering the functionality of the components under
circumstances derivable by an analyzer or given interactively by the software engineer. The triggering con-
dition itself may be described using yet another domain of predicate logic using statements over the states of
the colored Petri net. This domain is the concrete binding for the transition coloring parameter used to in-
stantiate the colored Petri net for this example.

Using such existing domain implementation knowledge that describe how to realize the abstract concepts
effectively and efficiently in terms of lower level concepts, we get more reliable, and often more effective
algorithms for the initial implementation. Thus, there is less need for rework.
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The description of the semantics
of the source and target domains
that participate in a transforma-
tion (or method or software com-
ponent) makes it possible to verify
transformations (see [Win94])
within a domain (used to optimize
the system description) as well as
between domains (used to imple-
ment high level concepts by lower
level concepts). The machine-
interpretability of the semantics in
DMS is the enabling condition to
build tool support for actually
performing the proofs. If all trans-
formations applied to construct a
software system are proven to be
correct the resulting code obvi-
ously is correct by construction.

Even if no attempt is made to
prove correctness of transforma-
tions, test cases may be derived
from the system specification and
the transformations applied to
test the final code with critical
values.

3.4 Traceability Aids Fault Analysis and Inevitable Software Maintenance
Regardless whether the transformations have been proven to be correct, it is important to trace defective
knowledge whenever an error is detected in some level of description of the system. Candidates for such de-
fective knowledge are:

• the specification of the requirements of the system,
• erroneous transformations, methods, and software components, and
• the semantics of the domains involved in the development (resulting in validity proofs of wrong

transformations, methods, and software components and/or wrong analysis results that may have pro-
vided preconditions for applied transformations, methods, and software components)

DMS allows traceability between any of the specification fragments, implementation fragments (at any level
of abstraction derived from the specification fragments), and the transformations, methods, and software
components used in the derivation process. This supports finding defective knowledge involved in an im-
plementation fragment, and/or determining incorrect implementation fragments related to errors found in a
specification.

In our production cell example suppose there is an error in the parts interchanged between the conveyor belt
and the consumer. Implementation code to ensure the correctness of this interchange can be found in the
conveyor belt controller and the consumer controller as well as some controller(s) of the other subsystems.
The tracing capability of DMS allows the location of all these places in the C code, each of which is a can-
didate cause of the problem. In Figures 4 and 6, we have highlighted in grey the requirement for synchroni-
zation and its implementation with an incorrectly negated condition.

In any realistic application context, customer demands will change and engineering errors will be made both
during the development and the life of the product. Changes to the requirements for the software system,
and well as defective implementation knowledge cause the necessity to modify, i.e. maintain, the system.
For high integrity systems it is unacceptable to modify the code directly as this would compromise the qual-
ity of the software. Instead one should modify the defective knowledge or specification and then redesign to
ensure the final modified code being trustworthy.

void conveyor_belt_controller()
{ for (;;)

{ // wait for a new state of the conveyor belt, that is for addition or removal of a part
wait_for_conveyor_belt_state_change();
// move conveyor belt if possible
if (conveyor_belt_empty())
continue; // moving conveyor belt would not change state

else if (conveyor_belt_last_position_empty()) // faulty inverted condition
continue; // there is a part at the end of the conveyor belt; moving is unsafe

else if (conveyor_belt_middle_position_not_empty())
{ if (   (== conveyor_belt_middle_position_part() square)
    !! (== conveyor_belt_middle_position_part() triangle)

    !! (== conveyor_belt_middle_position_part() disk)
   )
continue; // moving violates liveness as a part at the end of the belt cannot leave belt

}
if (== conveyor_belt_first_position_part() square)
{ if ((splicer_has_square())

{ if (!(splicer_has_triangle()) && !(conveyor_belt_second_position_part() triangle))
error_conveyor_belt_fed_incorrectly(); // liveness condition violated

else
continue; // moving would violate liveness condition

}
 else

{ if (win_race_condition()) // try to win race condition to move conveyor belt
{ move_conveyor_belt_forward(); // we won race condition
allow_race();   // allow next race

}
else
continue; // someone won race, which results in modifying the conveyor belt state

}
}

   else if (== conveyor_belt_first_position_part() triangle)
...

else if (== conveyor_belt_first_position_part() disk)
{ if (drill_has_disk() !! drill_has_torus())

continue; // moving would violate liveness condition
else
{ if (win_race_condition()) // try to win race condition to move conveyor belt

{ move_conveyor_belt_forward(); // we won race condition
allow_race();   // allow next race

}
else
continue; // someone won race, which results in modifying the conveyor belt state

}
else
error_conveyor_belt_fed_incorrectly(); // wrong part

} //end for
}

Figure 6. A Control Program for the Conveyor Belt in C



DMS supports maintaining software by recording its original design history and using the traceability to
determine the impact of a change, preserving as much of the original design as possible. This reduces not
only the overall amount of resources needed to construct the modified system code but also makes it more
likely that the outcome of the maintenance process is correct. The quality of the code is not compromised by
the need to maintain it.

Considering that the major effort in software engineering is spent during maintenance such a design revi-
sion is a key capability for each practical model of software engineering. For high-integrity software, this is
especially important, as successful software must inevitably evolve. Since DMS, in repairing a design, con-
tinues to use tested domain knowledge, the error re-injection rate caused by conventional software mainte-
nance methods can be largely avoided.

This is done within a framework of domain knowledge that is (re)used in the construction and maintenance
of many different systems. This increases the reliability of the domain knowledge, and thus of the software
developed using it, by virtue of the fact that the knowledge is validated by using it in many different places
successfully. Each error in domain knowledge detected by even only one of the systems failing results in in-
creasing the reliability of all systems using that domain knowledge by maintaining these systems and re-
placing the defective knowledge with corrected information. Reusing the domain knowledge in the con-
struction and maintenance of different systems increases the reliability of each of the systems in virtue of
the fact that the knowledge is validated by using it in many places.

3.5 Reverse Engineering and High Integrity Systems
Existing “legacy” HIS systems constructed by more conventional methods still require maintenance. DMS
can be applied to such a system for maintenance purposes by first reverse-engineering to obtain a plausible
design. Reverse engineering using well-tested domains can help validate the correctness of the legacy sys-
tem, locating errors, and can also help validate domain knowledge used in follow-on applications.

It is not necessary to reverse engineer back to a fully abstract problem specification, or to reverse-engineer
the entire application at once. For legacy applications, raising the abstraction level only a little may provide
considerable insight into the system, as one might obtain by reverse-engineering our sample C program
back to colored Petri nets. Further, a long-lived application provides a long time window in which the re-
verse engineering activity can take place. The only requirement for a software modification is that the rele-
vant part of the design be reverse-engineered.

3.6 Summary of Impact of DMS on HIS
DMS supports the development of high integrity software in many ways. DMS uses problem specific do-
mains for the specification of system requirements. Moreover, layered domains ease the construction proc-
ess of the system by reducing the size of steps. Simulation and analysis of specifications, i.e. system de-
scriptions, on many levels of abstraction reduce specification errors. Validated domain knowledge in the
form of transformations, methods, and software components that are (re)used for many systems increases
their reliability. Explicit domain semantics allow proof of the correctness for domain knowledge. Mechani-
cal application of domain knowledge avoids process errors. Traceability of defective knowledge promotes
quick identification and recovery. Test case extraction from specifications enables comprehensive mechani-
cal testing. Maintenance of systems is a value adding activity without compromising quality. DMS is
grounded in the practical software engineering realm by supporting reverse engineering to maintain existing
systems as well as to validate domain knowledge. DMS scales to handle practical sized applications and
interactions between multiple engineers. We consequently believe that systems like DMS would be effec-
tive support for HIS lifecycles.

4. Status of DMS

As of late 1997, the DMS tool suite is rather more architecture than reality. A team of 8 engineers are pres-
ently working full-time on the system. The parallel processing language, PARLANSE (the implementation
domain for DMS), is running robustly on SMP Windows/NT systems, and is being used to develop compo-
nents of DMS. The initial transformational core is nearing operation, including an SMP-capable hypergraph
foundation, supporting a sophisticated rewrite engine based on associative-commutative completion rou-



tines. The rewrite engine is intended for use on rewrites extracted from algebraic specifications, which in
turn enables symbolic analysis and simulation using domain denotational semantics. An initial target do-
main of full ANSI C++ is under construction.

We hope to have a domain-definition domain operative by 1998, along with an incremental editor driven by
the domain syntax. Other domains will be defined in 1998, and the key capability, traceability, will be im-
plemented, providing the basis for the modification capabilities outlined here. A base of domains is required
to support reverse engineering capabilities, and we expect these to grow over time.

5. Related Work

Formal Methods
In [PW95] an evolutionary process model for manual program development is presented, where the correct-
ness of all development steps is checked by suitable verification tools. The model centers around a devel-
opment graph which contains the specifications, programs, and proofs together with relations between them.
Due to the huge proof obligations for large application systems this approach is not practical for developing
reliable software. It also does not allow mechanical support for system modifications.

Different methods have been applied to a case study for constructing a control system for a reactive system,
a production cell (see [LL95] for a description of 18 of currently 35 approaches) many (if not all) of which
can benefit from the DMS tool support for software construction.

Another approach for developing reactive control systems, the Abstraction-Synthesis-Transformation meth-
odology, is described in [Win96]. The central idea of this approach is to describe the real world as directly
as possible, abstract away unnecessary details, synthesize a possible controller from the abstracted descrip-
tion, and finally optimize the synthesized code by applying optimizing transformations. Such an approach
would be well supported by the DMS technology.

Maintenance Tools
In [Wil83] transformational metaprograms, not code, are proposed to be the major software product. Im-
plementation decisions can be replayed in the exact order they were made on a previous specification. This
is naïve replay and fails when some specification change invalidates an implementation decision.

The Programmer’s Apprentice (see [Wat88, RW90]) constructs code from an abstraction by applying and
completing interactively chosen clichés to it. Code modification is done by abstracting the code into a
higher level specification, allowing arbitrary changes, and then reimplementing. The transformational deri-
vation and its justification are not recorded; they are lost.

The Maintainer’s Assistant (see [WCM89, WB95]) uses input/output behavior preserving, possibly ab-
stracting transformations applied to a wide spectrum language to maintain the software. Apparently the
system does not support non-behavior-preserving modifications of the software. It appears to be used only
for porting and translation rather than explanation and modification.

Kestrel has built a replay system that attempts to match implementation decisions with changed circum-
stances by using a heuristic approach (see [Gol90]). However, this may result in reapplying an old decision
under inappropriate circumstances, which in turn may cause cascading spurious effects. This means that the
resulting implementation may not have the expected desired properties. Thus, these properties have to be re-
verified manually.

6. Concluding Remarks

We have argued, unsurprisingly, that the construction of high integrity software (HIS) requires formal
methods. More importantly, we argue that realistic deployment scenarios for HIS requires formal support
for modification. We described a developing software engineering environment, the Design Maintenance
System (DMS), that supports domain-based incremental, transformational construction and maintenance of
large application systems. We discussed the qualitative effects of using DMS for HIS, and conclude that
DMS has many of the necessary properties for formally maintaining High Integrity Software.

This work has been supported by the National Institute of Standards and Technology (NIST), Advanced
Technology Program (ATP) under the Component-Based Software program.
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