
Branch Coverage for Arbitrary Languages Made Easy

Ira. D. Baxter, CTO
Semantic Designs, Inc.
12636 Research Blvd. #

Austin, Texas, 78579 USA
+1 512 250 1018

idbaxter@semdesigns.com

ABSTRACT
Branch coverage is an important measure of the
thoroughness of testing. One can easily get tools that
collect this information for mainstream languages (C, Ada)
on mainstream platforms (Solaris, UNIX). Such tools are
difficult to find for less widely used or interpretive
languages (JavaScript) or languages used on nonstandard
platforms (C in embedded systems).

This paper shows the straightforward result that an
industrial strength source-to-source transformation system
can install test probes in software systems easily. What is
not obvious is that such transformation systems exist. The
consequential good news is that branch coverage testing
tools can be easily built for all kinds of software in all kinds
of execution environments.

Keywords
Test coverage, branch coverage, transformations

1 HOW CAN WE EASILY INSTRUMENT CODE?
Testing software is hard. Knowing that software is well
tested is even more difficult. One widely accepted measure
is that of branch coverage, the ratio of basic code blocks
that were exercised by some test, to the total number of
code blocks in the system under test. In principle, this is
easy to obtain: instrument each basic block in a copy of the
source code with a probe, and accumulate probe
information across a set of tests.

In practice, doing the instrumentation is hard, because
reliably identifying the basic blocks is difficult due to
variation of syntax across languages. Two principal means
exist: modifying object code, and modifying source code.

Modifying source code is conceptually straightforward:
identify each basic block in the program, and insert a line
of code acting as a self-identifying probe in that basic
block. Figure 1 shows an instrumented C program, with
the probes italicized. Each basic block gets a unique
identifying number, associated with it source file and line
number. Hidden boilerplate initialization code resets all the
visited flags; running the program sets them, and some
hidden auxiliary support collects and integrates the results
of the visited vector across multiple tests. Additionally,
this acquires the extremely useful information about what

part of a system has not been executed by any test; such
code may not be reliable.

Identifying such basic blocks essentially requires that the
program be parsed, analyzed semantically for basic blocks,
and that the source be modified with corresponding probes.
In essence, one needs a complete language front-end to do
this. This is a daunting job for most practical languages.
(Solutions involving PERL-like string-manipulation tools
are not robust in the face of lexical rules, conditional
compilation, etc.)

Modifying object code trades the problem of understanding
language syntax for the problem of understanding and
patching machine code (actually, link editor code) for a
particular platform, and being able to correlate machine
instructions with source lines. A nice benefit of this
approach is that test coverage is implemented across
essentially all the languages having compilers for that

i nt f i bcache[1000] ; / / i ni t i al l y 0s

i nt f i b(i nt i) / / f ast Fi bonacci
{ i nt t ;
 visited[1]=1;
 swi t ch (i)
 { case 0: visited[2]=1;
 case 1: visited[3]=1;
 r et ur n 1;
 def aul t :
 visited[4]=1;
 i f (f i bcache(i))
 { visited[5]=1;
 r et ur n f i bcache(i) ; }
 el se { visited[6]=1;
 t =f i b(i - 1) ;
 f i bcache(i) =t +f i b(i - 2)
 r et ur n f i bcache(i) ;
 } ;
 } ;
 visited[7]=1;
} ;

Figure 1

platform. Techniques for doing this have been
implemented on many mainstream platforms because the
cost can be amortized.

Unfortunately, this method is not available for nonstandard
or interpretive languages (e.g. JavaScript), nor is it
available for nonstandard execution environments
(embedded C). Yet a huge amount of software is
implemented this way. This leads to a situation in which
one cannot obtain a desired measure of test quality for large
classes of software.

In essence, the only real solution is the source probe
installation scheme. One impractical cure is to persuade
every language vendor to add probe installation to his
language front end. A possible cure is for an organization
to find a compiler toolkit, and use it to achieve probe
coverage. This requires considerable skill and effort on the
part of the testing organization to a technology that is not
mainstream to their activity, and so this rarely occurs.

A more practical cure is to use a source-to-source
transformation system to install such probes. Arguably,
this also requires considerable skills, but significantly less
skill and time is needed to achieve an effective result. Then
a software engineering organization can take its test
management into its own hands, by writing a small number
of transforms. While this appears to be a relatively obvious
result, we see few organizations actually doing it, so this
paper exhibits the basic technique.

Given such tools, the transforms required to insert probes
are straightforward to write and use.

The paper is organized roughly as follows:

1. Discussion of the nature of an industrial strength
transformation system

2. Examples of transformations for test coverage for the
C language

3. Discussion of additional infrastructure needed to
implement test coverage

2 INDUSTRIAL-STRENGTH
TRANSFORMATION SYSTEMS

By industrial strength transformation system, we mean ones
that:
• Accept language definitions for real languages

• Accept source-to-source rewrite rules in those languages

• Can apply those rules to a source base reliably

• Are available on commodity platforms

We know of only a few such systems, but they do exist:
• REFINE (available commercially from Reasoning

Systems: www.reasoning.com)

• XT (available as a research tool via www.program-
transformation.org/xt)

• DMS (available commercially from Semantic Designs:
www.semdesigns.com)

These tend to be commercial systems because of the effort
it takes to implement them. There are a host of other
transformation systems, many listed at www.program-
transformation.org. (The author apologizes to any that
might meet the criteria but are not listed here, and would
appreciate knowing about them.)

Many compiler toolkits (e.g. YACC) offer LL(1) or
LALR(1) parsers, which work by definition only for very
limited classes of languages. Most compilers and tools
tend to have parsers with ad-hoc modifications to step
around the limitations. This means the compiler
infrastructure is not good for a wide range of languages.
What one needs is a full context-free parsing mechanism,
which both XT and DMS have (both systems use Tomita
style parsers [7,8])

What distinguishes industrial-strength transformation
systems from compiler toolkits is: the configurability and
robustness of their parsing technology, the integration of
that parsing technology with the pattern languages used for
source-to-source rewriting, and the ability to regenerate
legal source programs in all details from ASTs. This
capability is used for large scale reengineering (e.g., code
porting), software quality analysis and enhancement (e.g.,
clone detection and removal [4]), reverse engineering [2],
etc. For DMS, this integration serves to support a long-
term goal of design management [1,3].

To use these transformation systems, the language syntax
of interest has to be defined. Because these tools are highly
configurable, this is far less of a task than building a
compiler front end. Further, these systems are often
available with predefined language modules for mainstream
languages, such as C, C++, Ada, FORTRAN, etc.

3 SOURCE TO SOURCE TRANSFORMATIONS
Source to source program transformations (“rewrite rules”)
are used to modify programs directly in terms of the
programming language syntax. (Other program
transformations may be implemented by procedural code,
or sets of transformations). These rewrites are usually
stated in terms derived from an abstract or concrete
grammar, and these terms in turn correspond to underlying
abstract syntax trees.

A typical rewrite rule abstractly has the following form:
 LHS → RHS if condition
where both LHS (“ left hand side”) and RHS (“ right hand
side”) represent source language patterns with variables to
represent arbitrarily long well formed language sub strings.
The if condition is an optional phrase referring to the
variables in the LHS pattern. These rules are interpreted as,
“when a program part matches the LHS, replace it by the
RHS, if condition is true” . The condition may be

implemented as some additional matching constraints, or a
call on some decision procedure.

Real transformations systems add more syntax to this
simple scheme to allow specification of more details about
the patterns. For DMS, an example rewrite on C code to
convert an assignment statement into an auto-increment is
shown in Figure 2. This rule is written in DMS’s Rule
Specification Language. (For these examples, we take
advantage of the availability of a C language module for
DMS. We also take slight liberties with the transforms to
simplify their presentation).

This defines a rewrite r ul e with name aut o_i nc ,
having a syntax variable v of syntactic class l val ue. The
rule is a map from a C st at ement to a C st at ement
(maps from one syntax class to another, and maps from one
language to another are also possible with DMS). The text
inside the quote marks is legal C source, modulo the
possibility of escaped rule language tokens (marked with
\), such as syntax variables (e.g., \ v), which stand for
arbitrary legal C source. The left hand quoted string is the
rule LHS, and the right hand quoted string is the RHS. The
LHS represents any legal C l val ue, and the RHS
represents any legal expression adding some lvalue and
one. The occurrence of the same syntax variable multiple
times in the LHS requires that the same exact sequence
occur in both places; this is how the rule is constrained to
match identical source and target. The occurrence of the
syntax variable in the RHS requires that the changed
program include what was matched for that variable on the
LHS. Finally, the if condition in this rule is a language-
dependent decision rule that makes sure that the program
fragment matched by \ v contains no side effects, which
would make this transformation incorrect.

Before rule use, a typical rewriting engine first parses the
rule according to its rule language, and then parses the
quoted pattern in the language to be transformed (here
specified by the def aul t domai n phrase as the “C”

language), to construct pattern trees. At transformation
time, the rewrite engine matches the LHS pattern tree
against portions of the program, and replaces matched trees
by the corresponding RHS tree if the condition is satisfied.
The Figure 2 rule has the effect shown in figure 3.

Typically a transformation system will have a large number
of rules, and a large number of possible places in a program
to apply them. It is beyond the scope of this paper to
describe how the transformation system chooses which
rules and where to apply them. The simple notion that all
rules possessed are applied leaf-upwards to the entire parse
tree for a file is adequate for this paper, and supported
directly as one mode of operation of DMS.

4 REWRITES FOR TEST COVERAGE
Figure 4 shows a few of the rewrite rules required to put
instrumentation in C programs. Such rules are easy to
define for procedural languages, because such languages

def aul t domai n C.

r ul e aut o_i nc(v: l val ue) :
 s t at ement - >st at ement =
 “ \ v = \ v+1; ” r ewr i t es t o “ \ v++; ”
 i f no_si de_ef f ect s(v) .

Figure 2: A DMS rewrite rule

before: (* Z) [a>>2] =(* Z) [a>>2] +1;

after: (* Z) [a>>2] ++;

Figure 3

ext er nal pat t er n new_pl ace
 (x : st at ement _sequence) .

r ul e mar k_f unct i on_ent r y
 (r esul t : t ype,
 name: i dent i f i er ,
 decl s: decl ar at i on_l i s t ,
 s t mt s: st at ement _sequence) =
 “ \ r esul t \ name { \ decl s \ st mt s } ; ”
 r ewr i t es t o
 “ \ r esul t \ name
 { \ decl s
 { v i s i t ed[\ new_pl ace\ (\ st mt s\)] =1;
 \ s t mt s } } ; ” .

r ul e mar k_i f _t hen_el se
 (condi t i on: expr essi on;
 t s t mt : st at ement ; est mt : st at ement) =
 “ i f (\ condi t i on) \ t st mt el se \ est mt ; ”
 r ewr i t es t o
 “ i f (\ condi t i on)
 { v i s i t ed[\ new_pl ace\ (\ t s t mt \)] =1;
 \ t s t mt }
 el se { v i s i t ed[\ new_pl ace\ (\ est mt \)] =1;
 \ est mt } ; ” .

r ul e mar k_swi t ch_case
 (condi t i on: expr essi on,
 s t mt s: st at ement _sequence) =
 “ case \ e: \ s t mt s”
 r ewr i t es t o
 “ case \ e:
 { v i s i t ed[\ new_pl ace\ (\ st mt s\)] =1;
 \ s t mt s } ” .

Figure 4

mark all points of control transfer with explicit syntax.
One needs essentially one transform per control-transfer
syntax fragment.

There are two slightly tricky parts of these transforms. The
first is the introduction of a new place number for each
transform application. The tree-producing function
new_pl ace invents a new number each time it is called,
and associates it with the source file and line number of
each tree passed to it. (The DMS parsing infrastructure
stamps every tree with source information, making this
straightforward).

To do this for an entire software system, the tool must
invent new place names that are unique across all source
files involved in test. DMS can read tens of thousands of
files in a single session, apply these transformations, and
then produce the complete set of modified files.

The second issue is installing probes in the code following
a conditional block that contains control transfers. When a
control transfer is found in a conditional block (Figure 5), a
probe must be inserted before the statement following the
conditional (Figure 6). This takes a small set of rules to
“push” knowledge of the control-transfer up to the
containing conditional, and then install the probe. In the
interest of brevity, details of these transforms are not
provided here.

 Applying these transforms to an undecorated source
program produced the result in Figure 1. It is easy to
invent other interesting types of probes. Simply revising
the transforms to increment vi s i t ed slots changes the
probes from test coverage to profiling probes.

5 ADDITIONAL INFRASTRUCTURE NEEDED
Along with the probes, some additional support is needed
to make test coverage useful. This code is all
straightforward to produce manually.

First, some additional code is required in the system under
test. This code may need to be hand (or script) patched into
the source in a few places:
• A single-line declaration of the vi s i t ed array. The

transformation tool can report the largest new place
number as the array size after installing probes.

• A tiny initializer loop that resets the vi s i t ed array
when the systems under test starts up.

• A collector mechanism, that writes the vi s i t ed array
result out to some accumulating engine, when the probed
program terminates. In an embedded system, this
probably writes the vi s i t ed information to some
external development system.

Second, an accumulating engine must accumulate the
results of multiple tests. For test coverage, this is simply
ORing the last collected vi s i t ed array element-wise into
a was_vi s i t ed_by_some_t est array. One could
also record the test number that visited a place to provide
finer reporting detail. For profiling, the vi s i t ed array is
simply added element-wise to the accumulated result.

Third, a cross-reference between place names and source
files will be required to interpret the coverage results.
DMS can be straightforwardly configured into emitting the
collected association after inserting probes in all the files.

Lastly, some simple tool is needed to display the
was_vi s i t ed_by_some_t est array, and another to
accumulate statistics on a per system, per file basis is
probably useful. One could harness DMS’s ability to pretty
print files as HTML, to color code visited/not-visited places
differently, providing a visual display.

All of the additional infrastructure should easily be within
the scope and capacity of the testing group for an
organization to construct and maintain.

We have built such infrastructure, and implemented a
display tool in Java (Figure 7). The display tool provides
display of any selected file, showing lines where probes
have been installed and the coverage status of that probe.
Useful additions include to the display tool include a
boolean bit vector calculator to not only OR test vectors
together, but to compute AND and AND NOT, enabling a
tester to easily determine which sets of tests overlap, and
which tests in one test set are redundant with respect to
other test sets. Finally, one can produce summary
information and per-file coverage information as a report
for management and record-keeping.

 i f (condition)
 { x=y;
 r et ur n;
 }
 following code

Figure 5: Control transfer from conditional block

 i f (condition)
 { x=y;
 r et ur n;
 }
 v i s i t ed[place] =t r ue;
 following code

Figure 6: Inserted probe after conditional block

6 EXPERIENCE
This technology has been used to construct production test
coverage tools for:

• ANSI 89 C. A special front end is used to handle
he preprocessor directives. We expect other dialects
such as GNU C, Microsoft Visual C++ and ANSI
99 C to be simple extensions. C++ requires more
rules but the basic issues are otherwise identical.

• ANSI COBOL 85

• Java 1.1 and Java 1.3

• PARLANSE (a parallel language used to
implement DMS itself)

Each language requires its own set of language-specific
probe-installation transforms, but they all share the Java
coverage display tool.

Very large systems have been tested, including a Java
application of over 3500 source files requiring 77000
probes (the image in Figure 5 was taken from this case).
Probe overhead in very tight loops is around 50%; across
an entire application, it tends to be around 15%.

7 OTHER POSSIBLE TEST APPLICATIONS
Industrial-strength program transformation systems may be
used for a number of other possible testing applications.

One previous approach [6] has used Refine to enhance
mutation testing by generating mutant programs from the
program source.

Path coverage is a better indication of testing completeness
than test coverage, but the number of syntactically legal
paths in a program is generally enormous and therefore
untestable in practice. However, many syntactically legal
paths are semantically impossible due to language or
application constraints. By using symbolic reasoning to
compute path prefix conditions and eliminating paths
whose prefix condition is false, [5] limited the number of
actual feasible paths through a large Ada program to a few
hundred thousand. One possible research avenue would
use program transformation systems to read applications,
determine feasible paths, and install probes to verify
whether all feasible paths had actually been executed.

A different but very useful approach would be to
transformationally “compile” specifications into test case
generators. Building on that idea, if one coupled symbolic
execution with test case generation and feasible path
analysis, one might achieve a means of finding bugs in
code by analysis.

The ability to insert probes directly in code could also be
used to instrument code for run time status collection,
and/or automated data serialization to support data
transmission or long-term storage of state information.

8 SUMMARY
Test code coverage is an important measure of quality for
software systems. Obtaining coverage information for non-
mainstream languages, or for programs in nonstandard
execution environments has traditionally been difficult, as
it requires tricky object code patching technology, or
complex parsing infrastructure.

Industrial strength transformation systems can make it
straightforward to implement test coverage in these unique
circumstances, by:
• Defining the language of interest to the tool (sometimes

already available off-the-shelf)

• Writing a small set of source-to-source transformations.

• Implementing a small set of additional support
procedures to aid statistics initialization, accumulation,
display and analysis.

We have shown how to build practical test coverage tools
for unique languages and environments. This enables the
collection of good test quality statistics, and crucial
indications of untested code, for large classes of
applications for which such tools were previously
unavailable.

More details can be found at www.semdesigns.com.

REFERENCES
1. Baxter, I. Design Maintenance Systems, Comm. of the

ACM 35(4), 1992, ACM.

2. Baxter, I. and Mehlich, M. Reverse Engineering is
Reverse Forward Engineering. 4th Working
Conference on Reverse Engineering, 1997, IEEE.

3. Baxter, I. and Pidgeon, C. Software Change Through
Design Maintenance. International Conference on
Software Maintenance, 1997, IEEE.

4. Baxter, I, et al. Clone Detection Using Abstract Syntax
Trees, International Conference on Software
Maintenance, 1998, IEEE.

5. Goldberg, A, Wang, T. C., and Zimmerman, D.
Applications of feasible path analysis to program
testing, Proceedings of International Symposium on
Software Testing and Analysis (ISSTA), Seattle, WA
August, 1994

6. Kotik, G and Markosian, L. Automating Software
Analysis and Testing Using a Program Transformation
System. SIGSOFT Software Engineering Notes
14(8):75-84, 1989, IEEE.

7. Tomita, M. Efficient Parsing for Natural Languages,
1988, Kluwer Academic Publishers.

8. van den Brand, M., et al. Current Parsing Techniques
in Software Renovation Considered Harmful, Sixth
International Workshop on Program Comprehension,
1998, IEEE.

 6

Figure 7: Generic Test Coverage Display Tool

