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ABSTRACT 
Branch coverage is an important measure of the 
thoroughness of testing.  One can easily get tools that 
collect this information for mainstream languages (C, Ada) 
on mainstream platforms (Solaris, UNIX).  Such tools are 
difficult to find for less widely used or interpretive 
languages (JavaScript) or languages used on nonstandard 
platforms (C in embedded systems). 

This paper shows the straightforward result that an 
industrial strength source-to-source transformation system 
can install test probes in software systems easily.  What is 
not obvious is that such transformation systems exist.  The 
consequential good news is that branch coverage testing 
tools can be easily built for all kinds of software in all kinds 
of execution environments. 
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1 HOW CAN WE EASILY INSTRUMENT CODE? 
Testing software is hard.  Knowing that software is well 
tested is even more difficult.  One widely accepted measure 
is that of branch coverage, the ratio of basic code blocks 
that were exercised by some test, to the total number of 
code blocks in the system under test.  In principle, this is 
easy to obtain: instrument each basic block in a copy of the 
source code with a probe, and accumulate probe 
information across a set of tests. 

In practice, doing the instrumentation is hard, because 
reliably identifying the basic blocks is difficult due to 
variation of syntax across languages.  Two principal means 
exist: modifying object code, and modifying source code. 

Modifying source code is conceptually straightforward: 
identify each basic block in the program, and insert a line 
of code acting as a self-identifying probe in that basic 
block.  Figure 1 shows an instrumented C program, with 
the probes italicized.  Each basic block gets a unique 
identifying number, associated with it source file and line 
number.  Hidden boilerplate initialization code resets all the 
visited flags; running the program sets them, and some 
hidden auxiliary support collects and integrates the results 
of the visited vector across multiple tests.  Additionally, 
this acquires the extremely useful information about what 

part of a system has not been executed by any test; such 
code may not be reliable. 

Identifying such basic blocks essentially requires that the 
program be parsed, analyzed semantically for basic blocks, 
and that the source be modified with corresponding probes.  
In essence, one needs a complete language front-end to do 
this.  This is a daunting job for most practical languages.  
(Solutions involving PERL-like string-manipulation tools 
are not robust in the face of lexical rules, conditional 
compilation, etc.) 

Modifying object code trades the problem of understanding 
language syntax for the problem of understanding and 
patching machine code (actually, link editor code) for a 
particular platform, and being able to correlate machine 
instructions with source lines.  A nice benefit of this 
approach is that test coverage is implemented across 
essentially all the languages having compilers for that 

i nt  f i bcache[ 1000] ;   / /  i ni t i al l y  0s 
 
i nt  f i b( i nt  i )  / /  f ast  Fi bonacci  
{  i nt  t ;  
  visited[1]=1; 
  swi t ch ( i )  
  {  case 0:  visited[2]=1; 
    case 1:  visited[3]=1; 
            r et ur n 1;  
    def aul t :  
      visited[4]=1; 
      i f  ( f i bcache( i ) )  
         {  visited[5]=1; 
           r et ur n f i bcache( i ) ; }  
      el se {  visited[6]=1; 
             t =f i b( i - 1) ;  
             f i bcache( i ) =t +f i b( i - 2)  
             r et ur n f i bcache( i ) ;  
           } ;  
   } ;  
   visited[7]=1; 
} ;  

Figure 1 



 

platform.  Techniques for doing this have been 
implemented on many mainstream platforms because the 
cost can be amortized. 

Unfortunately, this method is not available for nonstandard 
or interpretive languages (e.g. JavaScript), nor is it 
available for nonstandard execution environments 
(embedded C).  Yet a huge amount of software is 
implemented this way.  This leads to a situation in which 
one cannot obtain a desired measure of test quality for large 
classes of software. 

In essence, the only real solution is the source probe 
installation scheme.  One impractical cure is to persuade 
every language vendor to add probe installation to his 
language front end.  A possible cure is for an organization 
to find a compiler toolkit, and use it to achieve probe 
coverage.  This requires considerable skill and effort on the 
part of the testing organization to a technology that is not 
mainstream to their activity, and so this rarely occurs. 

A more practical cure is to use a source-to-source 
transformation system to install such probes.  Arguably, 
this also requires considerable skills, but significantly less 
skill and time is needed to achieve an effective result.  Then 
a software engineering organization can take its test 
management into its own hands, by writing a small number 
of transforms.  While this appears to be a relatively obvious 
result, we see few organizations actually doing it, so this 
paper exhibits the basic technique. 

Given such tools, the transforms required to insert probes 
are straightforward to write and use. 

The paper is organized roughly as follows: 

1. Discussion of the nature of an industrial strength 
transformation system 

2. Examples of transformations for test coverage for the 
C language 

3. Discussion of additional infrastructure needed to 
implement test coverage 

2 INDUSTRIAL-STRENGTH 
TRANSFORMATION SYSTEMS 

By industrial strength transformation system, we mean ones 
that: 
• Accept language definitions for real languages 

• Accept source-to-source rewrite rules in those languages 

• Can apply those rules to a source base reliably 

• Are available on commodity platforms 

We know of only a few such systems, but they do exist: 
• REFINE (available commercially from Reasoning 

Systems: www.reasoning.com) 

• XT (available as a research tool via www.program-
transformation.org/xt) 

• DMS (available commercially from Semantic Designs: 
www.semdesigns.com) 

These tend to be commercial systems because of the effort 
it takes to implement them.  There are a host of other 
transformation systems, many listed at www.program-
transformation.org.  (The author apologizes to any that 
might meet the criteria but are not listed here, and would 
appreciate knowing about them.) 

Many compiler toolkits (e.g. YACC) offer LL(1) or 
LALR(1) parsers, which work by definition only for very 
limited classes of languages.  Most compilers and tools 
tend to have parsers with ad-hoc modifications to step 
around the limitations.  This means the compiler 
infrastructure is not good for a wide range of languages.  
What one needs is a full context-free parsing mechanism, 
which both XT and DMS have (both systems use Tomita 
style parsers [7,8]) 

What distinguishes industrial-strength transformation 
systems from compiler toolkits is: the configurability and 
robustness of their parsing technology, the integration of 
that parsing technology with the pattern languages used for 
source-to-source rewriting, and the ability to regenerate 
legal source programs in all details from ASTs.  This 
capability is used for large scale reengineering (e.g., code 
porting), software quality analysis and enhancement (e.g., 
clone detection and removal [4]), reverse engineering [2], 
etc.  For DMS, this integration serves to support a long-
term goal of design management [1,3]. 

To use these transformation systems, the language syntax 
of interest has to be defined.  Because these tools are highly 
configurable, this is far less of a task than building a 
compiler front end.  Further, these systems are often 
available with predefined language modules for mainstream 
languages, such as C, C++, Ada, FORTRAN, etc. 

3 SOURCE TO SOURCE TRANSFORMATIONS 
Source to source program transformations (“rewrite rules” ) 
are used to modify programs directly in terms of the 
programming language syntax.  (Other program 
transformations may be implemented by procedural code, 
or sets of transformations). These rewrites are usually 
stated in terms derived from an abstract or concrete 
grammar, and these terms in turn correspond to underlying 
abstract syntax trees. 

A typical rewrite rule abstractly has the following form: 
 LHS → RHS  if  condition 
where both LHS (“ left hand side” ) and RHS (“ right hand 
side” ) represent source language patterns with variables to 
represent arbitrarily long well formed language sub strings. 
The if condition is an optional phrase referring to the 
variables in the LHS pattern.  These rules are interpreted as, 
“when a program part matches the LHS, replace it by the 
RHS, if condition is true” .  The condition may be 



 

implemented as some additional matching constraints, or a 
call on some decision procedure. 

Real transformations systems add more syntax to this 
simple scheme to allow specification of more details about 
the patterns.  For DMS, an example rewrite on C code to 
convert an assignment statement into an auto-increment is 
shown in Figure 2.  This rule is written in DMS’s Rule 
Specification Language. (For these examples, we take 
advantage of the availability of a C language module for 
DMS.  We also take slight liberties with the transforms to 
simplify their presentation). 

This defines a rewrite r ul e with name aut o_i nc , 
having a syntax variable v  of syntactic class l val ue.  The 
rule is a map from a C st at ement  to a C st at ement  
(maps from one syntax class to another, and maps from one 
language to another are also possible with DMS).  The text 
inside the quote marks is legal C source, modulo the 
possibility of escaped rule language tokens (marked with 
\ ), such as syntax variables (e.g., \ v ), which stand for 
arbitrary legal C source.  The left hand quoted string is the 
rule LHS, and the right hand quoted string is the RHS.  The 
LHS represents any legal C l val ue, and the RHS 
represents any legal expression adding some lvalue and 
one.  The occurrence of the same syntax variable multiple 
times in the LHS requires that the same exact sequence 
occur in both places; this is how the rule is constrained to 
match identical source and target.  The occurrence of the 
syntax variable in the RHS requires that the changed 
program include what was matched for that variable on the 
LHS.  Finally, the if condition in this rule is a language-
dependent decision rule that makes sure that the program 
fragment matched by \ v  contains no side effects, which 
would make this transformation incorrect. 

Before rule use, a typical rewriting engine first parses the 
rule according to its rule language, and then parses the 
quoted pattern in the language to be transformed (here 
specified by the def aul t  domai n phrase as the “C”  

language), to construct pattern trees.  At transformation 
time, the rewrite engine matches the LHS pattern tree 
against portions of the program, and replaces matched trees 
by the corresponding RHS tree if the condition is satisfied. 
The Figure 2 rule has the effect shown in figure 3. 

Typically a transformation system will have a large number 
of rules, and a large number of possible places in a program 
to apply them.  It is beyond the scope of this paper to 
describe how the transformation system chooses which 
rules and where to apply them.  The simple notion that all 
rules possessed are applied leaf-upwards to the entire parse 
tree for a file is adequate for this paper, and supported 
directly as one mode of operation of DMS. 

4 REWRITES FOR TEST COVERAGE 
Figure 4 shows a few of the rewrite rules required to put 
instrumentation in C programs.  Such rules are easy to 
define for procedural languages, because such languages 

def aul t  domai n C.  

r ul e aut o_i nc( v: l val ue) :  
    s t at ement - >st at ement  = 
  “ \ v  = \ v+1; ”  r ewr i t es t o “ \ v++; ”  
       i f  no_si de_ef f ect s( v) .  
 

Figure 2: A DMS rewrite rule 

before: ( * Z) [ a>>2] =( * Z) [ a>>2] +1;  

after:  ( * Z) [ a>>2] ++;  

Figure 3 

ext er nal  pat t er n new_pl ace 
      ( x : st at ement _sequence) .  
 
r ul e mar k_f unct i on_ent r y 
   ( r esul t : t ype,  
    name: i dent i f i er ,  
    decl s: decl ar at i on_l i s t ,     
    s t mt s: st at ement _sequence)  =  
 “ \ r esul t  \ name {  \ decl s \ st mt s } ; ”  
       r ewr i t es t o  
 “ \ r esul t  \ name  
    {  \ decl s  
      {  v i s i t ed[ \ new_pl ace\ ( \ st mt s\ ) ] =1;  
        \ s t mt s } } ; ” .  
 
r ul e mar k_i f _t hen_el se 
   ( condi t i on: expr essi on;  
    t s t mt : st at ement ; est mt : st at ement )  = 
 “ i f  ( \ condi t i on) \ t st mt  el se \ est mt ; ”  
      r ewr i t es t o 
 “ i f  ( \ condi t i on)  
    {  v i s i t ed[ \ new_pl ace\ ( \ t s t mt \ ) ] =1;  
      \ t s t mt }  
  el se { v i s i t ed[ \ new_pl ace\ ( \ est mt \ ) ] =1;  
        \ est mt } ; ” .  
 
r ul e mar k_swi t ch_case 
  ( condi t i on: expr essi on,  
   s t mt s: st at ement _sequence)  = 
 “ case \ e:  \ s t mt s”  
    r ewr i t es t o 
   “ case \ e:  
     {  v i s i t ed[ \ new_pl ace\ ( \ st mt s\ ) ] =1;  
       \ s t mt s } ” .  
 

Figure 4 



 

mark all points of control transfer with explicit syntax.  
One needs essentially one transform per control-transfer 
syntax fragment. 

There are two slightly tricky parts of these transforms.  The 
first is the introduction of a new place number for each 
transform application. The tree-producing function 
new_pl ace invents a new number each time it is called, 
and associates it with the source file and line number of 
each tree passed to it.  (The DMS parsing infrastructure 
stamps every tree with source information, making this 
straightforward).   

To do this for an entire software system, the tool must 
invent new place names that are unique across all source 
files involved in test.  DMS can read tens of thousands of 
files in a single session, apply these transformations, and 
then produce the complete set of modified files. 

The second issue is installing probes in the code following 
a conditional block that contains control transfers.   When a 
control transfer is found in a conditional block (Figure 5), a 
probe must be inserted before the statement following the 
conditional (Figure 6).   This takes a small set of rules to 
“push”  knowledge of the control-transfer up to the 
containing conditional, and then install the probe.  In the 
interest of brevity, details of these transforms are not 
provided here. 

 Applying these transforms to an undecorated source 
program produced the result in Figure 1.  It is easy to 
invent other interesting types of probes.  Simply revising 
the transforms to increment vi s i t ed slots changes the 
probes from test coverage to profiling probes. 

5 ADDITIONAL INFRASTRUCTURE NEEDED 
Along with the probes, some additional support is needed 
to make test coverage useful.  This code is all 
straightforward to produce manually. 

First, some additional code is required in the system under 
test.  This code may need to be hand (or script) patched into 
the source in a few places: 
• A single-line declaration of the vi s i t ed array.  The 

transformation tool can report the largest new place 
number as the array size after installing probes. 

• A tiny initializer loop that resets the vi s i t ed array 
when the systems under test starts up. 

• A collector mechanism, that writes the vi s i t ed array 
result out to some accumulating engine, when the probed 
program terminates.  In an embedded system, this 
probably writes the vi s i t ed information to some 
external development system. 

Second, an accumulating engine must accumulate the 
results of multiple tests.  For test coverage, this is simply 
ORing the last collected vi s i t ed array element-wise into 
a was_vi s i t ed_by_some_t est  array.  One could 
also record the test number that visited a place to provide 
finer reporting detail.  For profiling, the vi s i t ed array is 
simply added element-wise to the accumulated result. 

Third, a cross-reference between place names and source 
files will be required to interpret the coverage results.  
DMS can be straightforwardly configured into emitting the 
collected association after inserting probes in all the files. 

Lastly, some simple tool is needed to display the 
was_vi s i t ed_by_some_t est  array, and another to 
accumulate statistics on a per system, per file basis is 
probably useful.  One could harness DMS’s ability to pretty 
print files as HTML, to color code visited/not-visited places 
differently, providing a visual display. 

All of the additional infrastructure should easily be within 
the scope and capacity of the testing group for an 
organization to construct and maintain.  

We have built such infrastructure, and implemented a 
display tool in Java  (Figure 7). The display tool provides 
display of any selected file, showing lines where probes 
have been installed and the coverage status of that probe.  
Useful additions include to the display tool include a 
boolean bit vector calculator to not only OR test vectors 
together, but to compute AND and AND NOT, enabling a 
tester to easily determine which sets of tests overlap, and 
which tests in one test set are redundant with respect to 
other test sets.  Finally, one can produce summary 
information and per-file coverage information as a report 
for management and record-keeping. 

 i f  ( condition)  
   {   x=y;  
      r et ur n;  
   }  
 following code 
  

Figure 5: Control transfer from conditional block 

 i f  ( condition)  
   {   x=y;  
      r et ur n;  
   }  
 v i s i t ed[ place] =t r ue;  
 following code 
  

Figure 6: Inserted probe after conditional block 



 

6 EXPERIENCE 
This technology has been used to construct production test 
coverage tools for: 

• ANSI 89 C.  A special front end is used to handle 
he preprocessor directives. We expect other dialects 
such as GNU C, Microsoft Visual C++ and ANSI 
99 C to be simple extensions.   C++ requires more 
rules but the basic issues are otherwise identical. 

• ANSI COBOL 85 

• Java 1.1 and Java 1.3 

• PARLANSE (a parallel language used to 
implement DMS itself) 

Each language requires its own set of language-specific 
probe-installation transforms, but they all share the Java 
coverage display tool. 

Very large systems have been tested, including a Java 
application of over 3500 source files requiring 77000 
probes (the image in Figure 5 was taken from this case).  
Probe overhead in very tight loops is around 50%; across 
an entire application, it tends to be around 15%. 

7 OTHER POSSIBLE TEST APPLICATIONS 
Industrial-strength program transformation systems may be 
used for a number of other possible testing applications. 

One previous approach [6] has used Refine to enhance 
mutation testing by generating mutant programs from the 
program source. 

Path coverage is a better indication of testing completeness 
than test coverage, but the number of syntactically legal 
paths in a program is generally enormous and therefore 
untestable in practice.  However, many syntactically legal 
paths are semantically impossible due to language or 
application constraints.  By using symbolic reasoning to 
compute path prefix conditions and eliminating paths 
whose prefix condition is false, [5] limited the number of 
actual feasible paths through a large Ada program to a few 
hundred thousand.  One possible research avenue would 
use program transformation systems to read applications, 
determine feasible paths, and install probes to verify 
whether all feasible paths had actually been executed. 

A different but very useful approach would be to 
transformationally “compile”  specifications into test case 
generators.  Building on that idea, if one coupled symbolic 
execution with test case generation and feasible path 
analysis, one might achieve a means of finding bugs in 
code by analysis. 

The ability to insert probes directly in code could also be 
used to instrument code for run time status collection, 
and/or automated data serialization to support data 
transmission or long-term storage of state information. 

8 SUMMARY 
Test code coverage is an important measure of quality for 
software systems.  Obtaining coverage information for non-
mainstream languages, or for programs in nonstandard 
execution environments has traditionally been difficult, as 
it requires tricky object code patching technology, or 
complex parsing infrastructure. 

Industrial strength transformation systems can make it 
straightforward to implement test coverage in these unique 
circumstances, by: 
• Defining the language of interest to the tool (sometimes 

already available off-the-shelf) 

• Writing a small set of  source-to-source transformations. 

• Implementing a small set of additional support 
procedures to aid statistics initialization, accumulation, 
display and analysis. 

We have shown how to build practical test coverage tools 
for unique languages and environments.  This enables the 
collection of good test quality statistics, and crucial 
indications of untested code, for large classes of 
applications for which such tools were previously 
unavailable. 

More details can be found at www.semdesigns.com. 
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Figure 7: Generic Test Coverage Display Tool 

 


