
Invited Application Paper

Re-Engineering C++ Components Via Automatic Program
Transformation

Robert L. Akers, Ph.D.
lakers@semdesigns.com

Ira D. Baxter, Ph.D.
idbaxter@semdesigns.com

Semantic Designs Inc.
12636 Research Blvd. #C214

Austin, Texas, USA 78759-2200
512-250-1018

Michael Mehlich, Ph.D.
mmehlich@semdesigns.com

ABSTRACT
Automated program transformation holds promise for a variety of
software life cycle endeavors, particularly where the size of legacy
systems makes code analysis, re-engineering, and evolution very
difficult and expensive. But constructing transformation tools
that handle the full generality of modern languages and that scale
to very large applications is itself a painstaking and expensive
process. This cost can be managed by developing a common
transformation system infrastructure that is re-used by an array of
derived tools that each address specific tasks, thus leveraging the
infrastructure cost over the various tools.

This talk describes DMS1, a practical, commercial program
analysis and transformation system, and discusses how its
infrastructure was employed to construct the Boeing Migration
Tool (BMT), a custom component modernization application
being applied to a large C++ industrial avionics system. The
BMT automatically transforms components developed under a
1990's era component style to a more modern CORBA-like
component framework, preserving functionality. We describe the
DMS infrastructure and the BMT application itself, illustrating
some of the kinds of syntheses and transformations required and
some of the issues involved with transforming industrial C++
code. We also discuss the development experience, including the
strategies for approaching the scale of the migration, the style of
interaction that evolved between the tool-building company and
its industrial customer, and how the project adapted to changing
requirements.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming –
Automating analysis of algorithms, Program Modification,
Program Synthesis, Program Transformations.
D.2.2 [Software Engineering]: Design Tools and Techniques –

1 DMS is a registered trademark of Semantic Designs Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PEPM’04, August 24-25, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-835-0/04/0008...$5.00.

Computer-aided software engineering (CASE).
D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement – Restructuring, reverse engineering, and
reengineering. D.2.13 [Software Engineering]: Reusable
Software – domain engineering. D.3.4 [Programming
Languages]: Processors – Parsing, Translator writing systems
and compiler generators, Code Generation.

General Terms
Algorithms, Management, Design, Economics, Languages

Keywords
Software transformation, software analysis, migration, component
architectures, legacy systems, C++, compilers, re-engineering,
abstract syntax trees, patterns, rewrite rules.

1. The DMS Software Re-Engineering Toolkit
DMS provides an infrastructure for software transformation based
on deep semantic understanding of programs. Programs are
internalized via DMS-generated parsers that exist for virtually all
conventional languages. Analyses and manipulations are
performed on abstract syntax tree (AST) representations of the
programs, and transformed programs are printed with
prettyprinters for the appropriate languages.

The Toolkit has been under development for 9 years, and is
capable of defining multiple, arbitrary specification and
implementation languages (domains) and can apply analyses and
transformations to source code written in any combination of
defined domains. Transformations may be either written as
procedural code or expressed as source-to-source rewrite rules in
an enriched syntax for the defined domains. Rewrite rules may be
optionally qualified by arbitrary semantic conditions.

The DMS Toolkit can be considered as extremely generalized
compiler technology. It presently includes the following tightly
integrated facilities:

• A hypergraph foundation for capturing program
representations (e.g., ASTs, flow graphs, etc.) in a form
convenient for processing.

• Complete interfaces for procedurally manipulating general
hypergraphs and ASTs.

• A means for defining language syntax and deriving parsers and
prettyprinters for arbitrary context free languages to convert
domain instances (e.g. source code) to and from internal forms.

• Support for defining and updating arbitrary namespaces
containing name/type/location information with arbitrary
scoping rules, and support for name and type analysis.

• An attribute evaluation system for encoding arbitrary analyses
over ASTs.

• An AST-to-AST rewriting engine that understands algebraic
properties (e.g., associativity and commutativity).

• The ability to specify and apply source-to-source program
transformations based on language syntax. Such transforms can
operate within a language or across language boundaries.

• A procedural framework for connecting these pieces and
adding arbitrary code.

The DMS architecture is illustrated above. Notice that the
infrastructure supports multiple domain notations (source code
languages), so that multiple languages can be handled or
generated by a given tool.

We are presently implementing a general scheme for capturing
arbitrary control flow graphs (including exceptions, continuations,
parallelism and asynchrony) and carrying out data flow analyses
across such graphs. Our goal is to build scalable infrastructure.
One aspect is support for computational scale, which is addressed
by implementing DMS in a parallel programming language,
PARLANSE [1], enabling DMS to run on commodity x86
symmetric-multiprocessing workstations.

C++ is among the many domains implemented within DMS, and
the system contains complete preprocessors, parsers, name and
type resolvers, and prettyprinters for both the ANSI and Visual
C++ 6.0 dialects. Unlike a compiler preprocessor, the DMS C++
preprocessor preserves both the original form and expanded
manifestation of the directives within the AST so that programs
can be manipulated, transformed, and printed with their
preprocessor directives preserved, even in the presence of
preprocessor conditionals.

DMS as presently constituted has been used for a variety of large
scale commercial activities, including cross-platform migrations,
domain-specific code generation, and construction of a variety of
conventional software engineering tools implementing tasks such
as dead and clone code elimination, test code coverage, execution
profiling, source code browsing, and static metrics analysis.

A more complete discussion of DMS is presented in [2]. DMS-
based tools are described on the Semantic Designs web page [3].

2. THE BOEING MIGRATION TOOL
Boeing's Bold Stroke avionics component software architecture is
based on the best practices of the mid 1990's [4]. Component
technology has since matured, and the CORBA component model
has emerged as a standard. The U.S. Government’s DARPA-
PCES program and OMG are sponsoring development of a
CORBA-inspired standard real time embedded system component
model [5], which offers standardization, superior encapsulation
and interfaces for ongoing development of distributed, real time,
embedded systems such as Bold Stroke. This standardization also
provides a base for tools for design and analysis of such systems.
Boeing wishes to upgrade its software to a more modern
architecture, a proprietary CCMRT variant known as PRiSm. The

Parsers

Domain

Definitions

Transformation

Engine

Transforms

Analyzers

Methods

Analyze/transform/undo

Unparser (prettyprinter) definitions

Parser

Definitions

Domain

Notations

(Spec)

AST Internal
Form
Representation

AST Internal
Form
Representation

Domain

Descriptions

Graph

Viewer

Unparser s

Domain
Notations
(Code)

Pixels

Engineer

Actions

Focus

Figure 1: DMS Architecture

task of converting components is straightforward and now well
understood, but a great deal of detail must be managed with
rigorous regularity and completeness. Since Bold Stroke is
implemented in C++, the complexity of the language and its
preprocessor requires careful attention to semantic detail. With
thousands of legacy components now fielded, the sheer size of the
migration task is an extraordinary barrier to success. With the use
of C++ libraries, approximately 150,000 lines of C++ source
contributes to a typical component, and a sound understanding of
the component's name space requires comprehension of all this
code.

To deal with the scale, semantic sensitivity, and regularity issues,
DARPA, Boeing, and Semantic Designs (SD) decided on an
automated approach to component migration using a DMS-based
tool. DMS, with its C++ front end complete with name and type
resolution, its unique C++ preprocessor, which allows both the
expansion (for understanding) and the preservation (for source
code re-creation) of preprocessor directives, its transformation
capability, and its scalability, was uniquely qualified as a substrate
for constructing a migration tool. Automating the migration
process assures regularity of the transformation across all
components and allows the examination of transformation
correctness to focus primarily on the general transforms rather
than on particular examples that may be idiosyncratic.

The legacy component structure was essentially flat, with all the
methods contributing to a component collected in a very few
classes (often just one), each defined with .h and .cpp files. One
principal piece of the migration involves factoring a component
into facets, which would form distinct classes reflecting different
areas of concern. Some facets encapsulate various functional
aspects and are specific to each component. Others capture
protocols for inter-component communication; while these
protocols are common in style among all components, code
specifics vary with the components' functional interfaces.

Factoring a component into functional facets requires human
understanding. Essentially, the legacy interface methods must be
sorted into bins corresponding to the facets, and indicative names
given to the new facet classes. To provide a clean specification
facility for the Boeing engineers using the BMT, we developed a
simple facet specification language. For each component, an
engineer names the facets and uniquely identifies which methods
(via simple name, qualified name, or signature if necessary)
comprise its interface. The bulk of the migration engineer's task is
the formulation of facet specifications for all the components to be
migrated.

The BMT translates components one at a time. Input consists of
the source code, the facet specification for the component being
translated, and the facet specifications of all components with
which it communicates, plus a few bookkeeping directives.
Conversion-related input is succinct.

The facet language itself is defined as a DMS domain, allowing
DMS to automatically generate a parser from its grammar. (The
BMT therefore is a multi-domain application, employing both
Visual C++ and the facet language.) A DMS-based attribute
evaluator over the facet domain traverses the facet specifications'
ASTs and assembles a database of facts for use during component
transformation.

After processing the facet specifications, the BMT parses and
does full name and type resolution on the C++ source code base,

including files included by any of the components in play. The
name resolver constructs a symbol table for the entire base,
allowing lookup of identifiers and methods with respect to any
lexical scope within the source code base. Only by internalizing
the entire problem in this manner can symbol lookups and the
transformations depending on them be guaranteed sound. This is
one key point that defeats scripting languages as C++
transformers. Three particular transformations typify what the
BMT does to perform the component migration:

• New classes for facets and their interfaces are generated based
on the facet specifications. One incarnation of the BMT
generates a base class for each facet that is essentially a
standard form. A "wrapper" class is also generated, inheriting
from the facet, and containing one method for each method in
the functional facet's interface. The wrapper methods simply
relay calls to the appropriate method in the component's core
classes. Constructing the wrapper methods involves
replicating each method's header and utilizing its arguments in
the relayed call. Appropriate #include directives must be
generated for access to entities incorporated for these purposes,
as well as for standard component infrastructure. A nest of
constructor patterns expressed in the DMS pattern language are
used to pull the pieces together into a class definition. After
constructing the facets and wrappers, the BMT must then
transform all the legacy code calls to any of the facets'
methods, redirecting original method calls to the core class to
instead call the appropriate wrapper method via newly declared
pointers. This is done using source-to-source transforms with
conditionals to focus their applicability.

• Newly generated "receptacle" classes provide an image of the
outgoing interface of a component to the other components
whose methods it calls. Since a particular component’s
connectivity to other components is not known at compile
time, the receptacles provide a wiring harness through which
dynamic configuration code can connect instances into a flight
configuration. Constructing the receptacles involves searching
all of a component's classes for outgoing calls and generating
code to serve each connection accordingly.

• Event sinks are classes that represent an entry point through
which an event service can deliver its product. Since the code
for event processing already exists in the legacy classes
(though its location is not specified to the BMT), synthesizing
event sinks involves having the BMT identify idiomatic legacy
code by matching against DMS patterns for those idioms.
Code thus identified is moved into the new event sink class,
which is synthesized with a framework of constructor patterns.
Definitions and #include directives supporting the moved
code must also be constructed in the event sink class.

3. EXPERIENCE
The project is still in progress, but we can make a number of
observations.

The customer, Boeing, has extensive expertise in avionics and
component engineering, but only a nascent appreciation of
transformation technology. The tool builder, Semantic Designs,
understands transformation and the mechanized semantics of C++,
but had only cursory prior understanding of CORBA component
technology and avionics. Furthermore, customer and tool builder
are geographically separated.

As it turns out, this all had its benefits, leading to a clean factoring
of roles that forced clarity at the operational boundaries. Once a
basic understanding of the component structure was
communicated, Boeing chose a particular component to use as a
foil for advancing the work. They performed a hand conversion
which served to force details into consideration and helped them
solidify the target via experimentation, while giving SD a concrete
image of the target and a benchmark for progress. Being
unburdened by application knowledge, SD was able to ask
questions that focused purely on translation issues, removing from
the conversion endeavor the temptation to make application-
related adjustments that could add instability.

With the task cleanly factored, a mode of electronic
communication evolved that reduced the need for travel and staff
commitments to meetings. The hand-translated component was
used for periodic benchmarking and evaluation, and its
elaboration served to communicate requirements changes. SD
periodically shipped the results of the auto-conversion and
versions of the tool itself to Boeing for evaluation, and Boeing
made suggestions with respect to the benchmark results. This
spared Boeing engineers the difficulty of evaluating transforms
abstractly. While they developed an appreciation for the
capabilities and limits of the technology, they did not need to
spend time learning to converse in terms of the transformation
rules themselves.

SD had to do its development without access to Boeing's sensitive
proprietary code base. Boeing partly finessed this potential
problem by using a non-sensitive trial component. But lack of
access to the full source code base forced the tool builders to
prepare for worst case scenarios of what C++ features may be
encountered by the BMT. This had the desirable effect of forcing
development of our C++ preprocessing infrastructure to handle
the cross product of preprocessing conditionals, templates, and
macros. These improvements both harden the tool against
unanticipated stress and strengthen the DMS infrastructure for
future projects.

Various factors forced major changes of direction during the
project. Initially, the target component model was essentially a
pure CORBA structure, since the details of the real-time avionics
variant had not thoroughly communicated to SD. A partial
prototype translation was implemented on this basis. Then came a
midstream decision to move first to a wrapper approach, which
would have resulted in throwing away a lot of hand-translated
code, had that been the mode of operation. The impact on the
BMT approach was quite limited, though, since the change
required only adjustments to the generative patterns and some
organizational code, not to the tool structure as a whole.
Likewise, a switch back to the fully defined PRiSm component
model is anticipated at a date which would have come too late in a
hand translation effort, but which the automatic conversion can
accommodate. Re-tooling the BMT will require less effort, and
once this is done, all components can be re-translated as easily as
one.

Essentially, the role of SD in this effort was to develop a custom
migration tool on top of our DMS infrastructure, while Boeing’s
task was to provide requirements and become the end user of the
tool. There is no reason in principle that Boeing could not have
been the tool developer. We encourage our users to consider
taking our infrastructure and classes we offer, and learning to
build tools themselves. The experience gained in building one

tool leverages quickly into the ability to create new tools when the
need arises, with the long-term effect being the incorporation of
transformational methods into the users’ software development
culture. For an organization that requires only a single DMS-
based application, the cost of training and learning by hard
experience are not justified. SD’s experienced engineers can
deliver a first product more quickly. But DMS is designed to be
distributed as a product, and we encourage organizations whose
applications are so strictly proprietary that outsourced tool
development is inappropriate and organizations which can
envision the long-term benefits of adopting the DMS custom tool
development methodology to take the toolkit and train to become
DMS engineers. Academic research environments also seem
particular open to this endeavor, as they can leverage the DMS
infrastructure to allow researchers to focus directly on their
problems of interest rather than building and maintaining a tool-
building environment or hacking tools together from inadequate
pieces.

A few over-arching observations apply to this and other mass
transformation projects:

• Mass migrations are best not mingled with changes in business
logic, optimization, or other software enhancements.
Entangling tasks muddies requirements, induces extra
interaction between tool builders and application specialists,
and makes evaluation difficult, at the expense of time and
money. Related tasks may be considered independently,
applying new transformation tools if appropriate.

• Automating a transformation task helps deal with changing
requirements. Modifying a few rewrite rules, constructive
patterns, and organizational code is far easier and results in a
more consistent product than revising a mass of hand-
translated code. Changes implemented in the tool may manifest
in all previously migrated code by simply re-running the
modified tool on the original sources. This allows blending the
requirements definition timeframe into the implementation
timeframe, which can significantly shorten the whole project.

• Cleanly factoring a migration task between tool builders and
application specialists allows proprietary information to
remain within the customer’s organization while forcing tool
builders toward optimal generality. Lack of access to
proprietary sources, or in general lack of full visibility into a
customer’s project induces transformation engineers to
anticipate problems and confront them in advance by building
robust tools. Surprises therefore tend to be less overwhelming.

• Automated transformation allows the code base to evolve
independently during the migration tool development effort.
To get a final product, the tool may be re-run on the most
recent source code base at the end of development. There is no
need for parallel maintenance of both the fielded system and
the system being migrated.

• Using a mature infrastructure makes the construction of
transformation-based tools not just economically viable, but
advantageous. Not doing this is infeasible. Language front
ends and analyzers, transformation engines, and other
components are all very significant pieces of software. The
BMT contains approximately 1.5 million lines of source code,
but most is infrastructure. Only 11K lines of code are BMT-
specific. Furthermore, off-the-shelf components are
inadequate to the task. For example, lex and yacc do not

produce ASTs that are suitable for manipulation. Only a
common parsing infrastructure can produce AST structures that
allow a rewrite engine and code generating infrastructure to
function over arbitrary domain languages and combinations of
languages.

• Customers can become transformation tool builders. There is
significant learning curve in building transformation-based
tools. A customer seeking a single tool can save money by
letting transformation specialists build it. But transformation
methods are well-suited to a range of software life cycle tasks,
and customers can be trained to build tools themselves and
incorporate the technology into their operation with great
benefit and cost savings.

4. FUTURE DIRECTIONS
The PRiSm or CORBA component technologies impose
computational overhead as service requests are routed through
several new layers of component communication protocol. A
DMS-based approach to partial evaluation could relieve this
overhead. Essentially, the extra layers exist to provide separation
of concern in design and coding and to provide plug-and-play
capability at configuration time. With semantic awareness of the
component wiring present in the source code, though, a DMS tool
could be developed to statically evaluate the various
communication indirections, thus sparing that run-time overhead.

In this highly performance-sensitive environment, the effort could
be well justified.

5. ACKNOWLEDGMENTS
We give our thanks to our collaborator in this effort, the Boeing
Company, and to the DARPA PCES program for its funding.

6. REFERENCES
[1] PARLANSE Reference Manual, Semantic Designs, Inc. 1998.
[2] Baxter, I. D., Pidgeon, C., and Mehlich, M., DMS: Program

Transformations for Practical Scalable Software Evolution.
Proceedings of the 26th International Conference on
Software Engineering, 2004.

[3] Semantic Designs, Inc. web site, www.semanticdesigns.com.
[4] Sharp, D. C., Reducing Avionics Software Cost Through

Component Based Product Line Development, Proceedings
of the 1998 Software Technology.

[5] Gidding, V., Beckwith, B., Real-time CORBA Tutorial,
OMG’s Workshop on Distributed Object Computing For
Real-Time and Embedded Systems,
www.omg.org/news/meetings/workshops/rt_embedded2003.h
tml, 2003.

