Previous CloneSet | Next CloneSet | Back to Main Report |
Clone Mass | Clones in CloneSet | Parameter Count | Clone Similarity | Syntax Category [Sequence Length] |
---|---|---|---|---|
2 | 3 | 1 | 0.968 | compound_stmt |
Clone Abstraction | Parameter Bindings |
Clone Instance (Click to see clone) | Line Count | Source Line | Source File |
---|---|---|---|
1 | 2 | 428 | Bio/MarkovModel.py |
2 | 2 | 440 | Bio/MarkovModel.py |
3 | 2 | 521 | Bio/MarkovModel.py |
| ||||
for i in range(len(p_transition)): p_transition[i, : ] = p_transition[i, : ]/sum(p_transition[i, : ]) # p_emission is the probability of an output given a state. # C(s,o)|C(s) where o is an output and s is a state. |
| ||||
for i in range(len(p_emission)): p_emission[i, : ] = p_emission[i, : ]/sum(p_emission[i, : ]) |
| ||||
for i in range(len(matrix)): matrix[i, : ] = matrix[i, : ]/sum(matrix[i, : ]) |
| |||
for i in range(len( [[#variable1982eda0]])): [[#variable1982eda0]][i, : ] = [[#variable1982eda0]][i, : ]/sum( [[#variable1982eda0]][i, : ]) # p_emission is the probability of an output given a state. # C(s,o)|C(s) where o is an output and s is a state. |
CloneAbstraction |
Parameter Index | Clone Instance | Parameter Name | Value |
---|---|---|---|
1 | 1 | [[#1982eda0]] | p_transition |
1 | 2 | [[#1982eda0]] | p_emission |
1 | 3 | [[#1982eda0]] | matrix |