
The Design Maintenance System (DMS)
A Tool for Automating Software Quality Enhancement

Ira D. Baxter, Ph.D.
Semantic Designs, Inc.
www.semdesigns.com

Keywords
software quality, design capture, knowledge reuse,
maintenance, automation, testing

Abstract
This white paper sketches how a new type of software

engineering technology can be used to automate a variety
of software quality enhancement activities. This
technology, a kind of extremely configurable, generalized
compiler, is packaged in a tool called the “Design
Maintenance System” (DMS). Automation is enabled by
“teaching” DMS critical concepts of the application
problem domain, properties of the application
programming language, and methodological software-
engineering problem solving approaches. Value comes
from using DMS to apply this organization-specific
knowledge to frequent activities of its engineers.

In essence, DMS is reusing deep engineering
knowledge (as opposed to tools that simply reuse “code”).
This amplifies the effect of skilled engineers, by allowing
them to focus on the deep engineering issues rather than
the microscopic details of carrying out such engineering
tasks, and by allowing them to experiment more easily with
changes that are system wide.

DMS can be used for a variety of software quality
enhancement activities. Because DMS can be configured
with many kinds of knowledge, there are many possibilities.
A few examples:

• Finding/removing dead or redundant code
• Instrumenting code for test coverage
• Test generation from specifications
• Checking organizational coding standards
• Reshaping code to regularize structure

(error handling, etc.)
• Extracting documentation from source code
• Reading/checking high-level specifications

(comunication..protocols,tests, state machines)
• Code generation from high level specifications
• Porting code to new dialects/environments

In a time of tight staff, budget and development cycles,
growing software systems, and rising expectations of
product quality, DMS can deliver considerable competitive
value to the employing organization.

1 Automation and design knowledge
Classic software engineering employs vast amounts of

manual engineering and only small amounts of automation.
Productivity gains are most likely to come from enhanced
automation harnessing reusable design knowledge, such as
the kinds of problems encountered in a problem domain,
different methods and tradeoffs for solving those problems,
means for coding solutions, test methods, etc. (”Code
reuse” is a special kind of low level kind of design reuse).

Conventional compilers provide most of the present-day
automation leverage, by analyzing low-level programs (C,
Java, Cobol) for mere language legality, and translating
those programs to even lower levels (machine code).
Analysis and translation are keys to more automation, but
not at the low level of conventional compilers.

If only the source code is analyzed or modified, design
documents start to decay and soon become untrustworthy
or useless. Useless design documents explains why most
software engineers spend half their time examining code
trying to understand what it does and why. Technically,
this is a hopeless task because product requirements and
specifications are not in the source code!

It is well known that errors made early in the design
process, but discovered late, are much more difficult to fix
than errors made and found late in the implementation
process [Boehm81]. A specification error costs 100 times
as much to fix as a coding mistake! This suggests that tools
that aid the correct construction of designs, and tools for
analyzing designs to detect errors, would be extremely
helpful. But since engineers and organizations are fallible,
it also implies that tools that can track such design
information into target systems and make corresponding
changes will also be valuable, to minimize the costs of
fixing such inevitable errors.

Automation can only help when it “understands” what
is being automated; this means that such automated help
must understand designs. So to maximize leverage,
designers and their tools must work on designs, not just
directly on the code.

The implications are that tools for design automation
must eventually handle design information (specifications,
architectures, and the decisions accepted and rejected that

Copyright © 2001-2012 Semantic Designs, Inc. 1

lead to the actual software and hardware implementation).
The ultimate goal is to enable the construction and
maintenance of a continuously up-to-date, modifiable
design document and corresponding system.

Design management tools must:
• Explicitly capture and maintain the design

knowledge used in a system
• Manage the scale of the design information

involved (thousands of concepts and their
relationships) and the software system source files
(millions of lines),

• Provide long term value in managing designs,
• Provide near term value via analyses,

and engineer-directed change management of
existing software systems for which design
information is difficult to obtain.

Key design knowledge to be captured and reused
consists of:

• Domain Notations: how to specify a problem in a
particular problem domain or engineering notation.
(obtained from domain analysis [Neighbors84])

• Specifications: the concise formal description of
problem, stated in a particular domain notation

• Generative Knowledge: knowledge of possible
ways to implement problem solutions using target
domains

• Implementation Knowledge: how a particular
system is structured to carry out its specification.

Building tools to manage design information is
extremely difficult, and cannot be done overnight. First,
there must be theory about what designs are, and how those
designs can be captured, analyzed and modified, and then
tools can be constructed used the theory foundations.

Semantic Designs (SD) is committed to constructing
such design management tools and delivering their value to
engineering organizations. The technical founders of SD
have worked out a unique theory for design management
over the past 15 years, based on a generalization of
compilers called transformation systems [Baxter92]. SD
has spent the last 5 years constructing a unique toolset
moving toward this the vision called the “Design
Maintenance System (DMS).

The DMS toolset, over time, provides increasing ability
to capture, analyze and revise the design and source code of
large software systems. Such full-lifecycle automation
would provide enormous productivity leverage to the
organizations’ engineering staff, and thus to the quality and
market value of the organization’s products.

While the present version of DMS [Baxter2004] does
not realize all the benefits of complete design management,
it can deliver considerable value by automating many tasks
related to source code and specifications. This paper

concentrates on the near term capability of DMS to analyze
and modify large software systems without having large
amounts of available design knowledge.

2 What DMS does
The current DMS Reengineering Toolkit

(http://www.semanticdesigns/Products/DMS/DMSToolkit.
html) enables an organization to define and automate:

• complex analysis tasks over a large software base
(dead code detection, style checking, testing,
bug detection, documentation extraction)

• massive regular change tasks to software
(test coverage probe insertion, API changes,
reformatting, structural changes)

• source code generation from a specification
(program generation, test case generation)

• translations from one notational system to another
(porting legacy applications, language upgrades)

3 DMS overview
DMS is able to accomplish this huge variety of tasks by

using the theory of design information to unify many
seemingly disparate activities with a common foundation:
that of a configurable, generalized compiler, parameterized
by considerable general and domain-specific knowledge.
The process requires two stages: first, encoding knowledge
for DMS to harness, and then reaping value by applying the
encoded knowledge to the analysis or modification of
software sources (see Figure 1). The knowledge given to
DMS is essentially the knowledge used by engineers:

• Language definitions, i.e. what notational systems
are involved in the system and/or analyses of the
system (the C language, state machines, etc.)

• General analysis methods for each type of
language (bad pointer analysis, what state
transitions can occur, etc.)

• General Optimization and Implementation methods
(how to optimize Boolean equations,
how to implement queues, etc.)

• Specific methods for analyzing the type of
problems faced by the engineer’s organization
(Are the right communications procedures called?
Is this state of the program ever reached?)

• Specific methods for making changes relevant to
the organization (optimizing large buffer transfers,
implementing using RTOS primitives)

As an example task, the figure shows an “example”
large-scale software source being optimized by DMS using
supplied background knowledge. The language definitions
are used to parse the large software system. The change-
specific analyses are used to extract the easily found fact,
“a in b”, from those sources. The background knowledge
about this system indicates the fact “b in c” is true. More

Copyright © 2001-2012 Semantic Designs, Inc. 2

change specific analyses concludes “a in c” from the
previous two facts, and tells the engineer in an analysis
result. Finally, the “a in c” conclusion is used to
automatically optimize the program using the general
transforms, and produce a revised result, using the language
definitions to pretty-print the result. The result: automated
optimization of the software system.

DMS provides economic value because the effort to
encode this knowledge is much smaller than the effort to
manually carry out tasks using this knowledge, especially if
the task is frequently repeated or the volume of code is
large. Typically, DMS is configured by providing it with a
few thousands of lines of “definitions”. This is generally

very small compared to the hundreds of thousands of lines
of code processed by DMS in carrying out designated tasks.

Semantic Designs enhances this economy of scale by
providing off-the-shelf modules for commonly used
language definitions, general analyses and transforms, such
as for C, COBOL, and XML etc. So the organization using
DMS may need only to supply their task-specific
knowledge. SD also offers services in defining tasks
appropriate for DMS, and encoding the application-
specification knowledge.

An additional valuable benefit of this arrangement is
that the organization defines and captures its key
engineering knowledge in a form usable by later engineers.

Figure 1: Automating a Software Engineering Task

DMS

Background Knowledge for Software Analysis or Modification probl em (KSLOC)
• Language Definitions Ada , SQL, Java …
• General Language Analyses ” var = expression ” => “ var modified”
• General Language Transforms ”if false then s else t endif - > t ”
• Change - specific Language Analyses “x in y” and “y in z” => “x in z”
• Change - specific Language Transforms “b in c” - > “true”

from Semantic Designs or Consultants/ Sr . Programmers/Engineers

Software System
Sources (MSLOC)

example
… a in b…
if a in c then p=7 else p=2 ;

Analyses of
Software System

a in b
b in c
a in c

Revised/Generated
Software System
Sources

… a in b…
p=7;

Automated!
Repeatable!
Scalable!

Captured!

4 When to use DMS
The key to extracting value with DMS is to think of

software engineering tasks in terms of the activities
defined in section 2. As an example, one might consider
determining whether all parts of an application program
have been executed as an analysis task. Removing dead
code would be a massive regular change. Producing code
to implement a protocol from a specification of the
protocol transitions is source code generation. And

converting from COBOL74 to COBOL85 is a translation.
Once a task is cast in these terms, the DMS mechanisms
offer obvious solutions to various types of tasks.

The first requirement is that the engineering problem
have enough scale to justify encoding the appropriate
knowledge. The basic issue is, how long will it take to
configure DMS versus how long will it take the engineers
by traditional methods? There are many simple one-shot
tasks for which the payoff of encoding this knowledge is

Copyright © 2001-2012 Semantic Designs, Inc. 3

not worth it. These tasks should continue to be done by
manual methods; typically a man-day task is too small to
handle with DMS. However, simple tasks that are
frequently repeated, such as extracting documentation,
can often justify using DMS. Tasks that require months
of man-effort (test construction, code reorganization, etc.)
clearly warrant evaluation with respect to DMS
capabilities.

For many common tasks (e.g., “Draw a call tree”,
“Determine test coverage”, “Reformat the sources”) in
standard languages (e.g., Java), an organization can
usually find a vendor supplying a tool for that specific
task. For such standard tasks, DMS provides no
particular advantage (although using DMS for such tasks
might make sense if DMS served other purposes in the
organization too, just to minimize tool learning costs).

However, there are many high-value nonstandard
tasks, limited usually only by the cleverness of the
engineers (“find duplicated code”, etc.) for which tools
are not available from vendors. Similarly, there are many
standard tasks on nonstandard languages (“Z8000 C”) or
environments (e.g., embedded systems). DMS is often
useful in these contexts as being the only practical means
to obtain a tool.

5 Sample DMS Applications and Benefits
The DMS tools have been applied in practice to many

code analysis and modification tasks. We list a few
below:

1) Itself. (Yes, we use our own tools!) DMS
provides many small languages to specify its
parts, and generates a considerable portion of it
automatically. An example: DMS automatically
converts a 30K SLOC COBOL analyzer spec to
roughly a million SLOC of code.

2) Factory code generation. A code generator was
built that converts a high-level factory machining
process specification into assembly level
controller code for a factory automation
computer.

3) Large-scale equation simplification: A 40K term
Boolean equation was simplified by 80%.

4) Code clone detection and removal. DMS has been
used to find 12% redundancy in 800K SLOC
COBOL, and 14% redundancy in 2.5 million lines
of Java, and 9% in 400K SLOC C code
[BaxterEtAl98].

5) Elimination of dead preprocessor conditionals
from 1.5 million lines of source code across 1800
C files.

The economic benefits of these applications depends

on the organizations’ view of value. As one example, for
DMS self-application, the payoff is that DMS otherwise
simply would have been impossible to construct! The
factory automation code generation also fits in the
otherwise almost impossible to construct category.

For clone detection, the payoff is in terms of reduced
engineering costs. It costs roughly (1999 terms)
$US1.00/source-line/year to have running code in an
organization. Removing the 10% redundant code from a
million line system then saves an organization $US100K
every year until the end of the software life.

For one customer, deletion of dead preprocessor
conditionals was necessary to manage the code base.
Manual estimates for the job suggested a man-year of
effort. DMS accomplished the job in 2 days, cutting 2.5
months out of the development schedule.

6 Why not build tools from scratch?
It is easy to find economic incentive in organizations

to build source analysis or modification tools.
Consequently it is often attempted, usually based on
generally respected tools such as PERL, LEX and YACC.
This generally fails, as the organization discovers:

• That PERL, which extremely good at pure text
strings, has no real understanding of source
program structures, is therefore unreliable in its
ability to detect and chance source code, and can
therefore only be used for 90% solutions of very
simple tasks. The remaining 10% must be done
by hand, and this is impractical on million line
systems.

• Defining working parsers for real languages is
hard, because modern languages have very large
and complex rules (SD’s definition of COBOL is
3500 syntax rules alone!)

• LEX and YACC are far less help for parsing
than their reputation suggests (e.g., most
languages are not “LALR(1)” as YACC requires,
so the language definition must be twisted to
make YACC work with it; a practical tool must
report errors, and YACC has no real error
reporting ability)

• Often, to process a language such as C, one has
to support some kind of preprocessor handling
possibly nested include files, conditional
selection, macro definition and expansion, for
which YACC provides zero support

• A working parser barely scratches the surface of
building a complete tool. One must have the
ability to analyze the parsed result, modify the
parsed result, and regenerate source text

Copyright © 2001-2012 Semantic Designs, Inc. 4

compatible with conventional compilers and
tools from the modified result.

• Scalability must be addressed if the tool is to
work in practice. A useful tool must be able to
parse hundreds of files, possibly millions of lines
of code as part of a single analysis in a single
session. It must handle the multiple languages
used in an application (e.g., C, SQL, XML, etc.).
And it must have the computational muscle to
process this large amount of input in a
reasonable length of time.

As a consequence, such in-house tools generally consume
the full-time attention of highly-skilled engineering
resources, but are usually are not completed, cannot be
fielded to user engineers, or maintained by anyone other
than the principal author. Many organizations either give
up or never tackle automation in software engineering,
even if the economics of a working tool make enormous
sense.

Semantic Designs has designed DMS to provide an
integrated tool infrastructure, so that engineers can
concentrate on the details of the task at hand. This makes
it economically practical for an organization to construct,
field and maintain automated scalable, nonstandard
software engineering tasks using DMS as a foundation.

7 How DMS does it: A Generalized Compiler
Conventional compilers contain several standard
structures:

A. A language parser, designed specifically to read
the language for which the compiler was
designed, reports on incorrect syntax, and builds
internal compiler data structures representing the
program

B. A symbol table, used to keep track of names and
types of language-specific entities such as
variable and functions, and handling language
scoping rules

C. One of more analysis components, to check the
semantic integrity of the program (“type
checking”) and to detect usage patterns and
information flows in code to enable
optimizations. The analysis components may
produce readable results (e.g. “unassigned
variables” or “cross-reference”)

D. A code transformer/optimizer, which uses the
program representation data structures and
analysis results to reshape the program into a
more efficient one (e.g., doing compile-time
arithmetic on constants, in-lining subroutines,
moving code out loops)

E. A code generation component, which uses the
program representation data structures and the
results of the analyzers to choose appropriate
target machine idioms

DMS contains generalizations of these compiler
components for many reasons:

• It needs to be configurable in all “compilation”
aspects to carry out arbitrary analyses and
transformations

• It is designed to work in an arbitrary language,
rather than just one.

• It must work with several languages at once,
not just one at a time

• It must work with many files at once,
not just one at a time

• It needs to be used for forward and reverse
engineering, not just compilation

Consequently, DMS provides the following
generalized compiler components:

a) An arbitrary language parser. This component
reads a set of designated language(s) of interest
and builds compiler-like data structures that can
be interpreted by the rest of DMS. It converts
language tokens such as string and floating point
numbers to the computer’s native representation,
captures comments, formats of values (radix,
leading zero count) and source positions (file, line
number and column numbers). It reports incorrect
syntax, and automatically builds internal DMS
data structures called Abstract Syntax Trees
(ASTs), efficiently and compactly representing
the source files and their structure. Infrastructure
to support INCLUDE files and preprocessors is
built in (and a complete C/C++ preprocessor is
available).

b) A generalized symbol table, that can store names
and information related to names, with arbitrary
language scoping rules.

c) A generalized parallel-execution analysis engine,
called an attribute evaluator. This component is
used to define semantic checks over the ASTs for
the designated languages, and to define detectors
of usage patterns and information flows in the
source files The analysis components may be
configured to produce readable results (e.g.
“dead code in File X at Line Y”) or compute
summary results for use by other DMS
components.

d) A general transformation (“rewrite”) engine.
The engine uses rules and patterns specified
directly using the syntax of the designated
languages (i.e., in the engineer’s vocabulary), to

Copyright © 2001-2012 Semantic Designs, Inc. 5

find places in the ASTs where transforms should
occur and make changes to those places, possibly
contingent on analysis results (e.g., “match
variable declarations; if no use of the variable
anywhere, delete the variable declaration”). The
transformation engine can directly carry out an
astonishing variety of effects. This includes
classic compiler optimizations (folding constants,
in-lining subroutines, moving code out loops).

e) A generalized code generation component, which
is just the rewrite engine used across languages
and/or abstraction levels. It can perform high-
level code to low-level code translation (e.g.,
mapping “while loops” to “conditional branches
and jumps”, or “XML DTDs” to “Java
structures”. And it can perform same-level to
same-level transformations (e.g., translating
“Visual Basic” to “C”).

f) A prettyprinter, which can regenerate the
appropriate language text files from the original
and more importantly, from the modified ASTs.
This provides formatted, readable regenerated
source files compatible with other language
processing tools such as conventional compilers.

g) Domain Language definition tools, which enable
DMS users to define their own design or
implementation languages (or dialects), attribute
evaluator equations, or rewrite rules. (Semantic
Designs can supply suitable DMS-tested language
definitions for a large number of standard
languages, such as C, C++, Java, COBOL, XML,
SQL, PL/I, Fortran, Verilog, VHDL…)

h) Scalable infrastructure in space and time. DMS is
unique in terms of scale management, as required
by the amount of information used in today’s
large software systems. DMS can read tens of
thousands of source files, totaling to several
million lines of code in multiple languages into a
single DMS session on a commodity Intel
workstation, keeping track of their origin in case
error reports or updates are required. Because of
the amount of information, much of DMS is
designed to execute in parallel on Windows NT
systems. As an example, DMS may have to apply
such analyses to thousands of files, so the
attribute evaluator automatically executes in
parallel where possible.

Summary
DMS is a revolutionary software engineering tool,

designed to aid engineers by automatically carrying out
analyses and modifications of software systems. These
are cast in a way that allows DMS to be applied to a large
number of useful engineering activities, such as checking,
testing, code generation, translation and many others.
DMS’s strength comes from foundations rooted deeply in
a theory of Design Maintenance, and its implementation
designed to handle large scale systems composed of
millions of lines of code and tens of thousands of files.

DMS will reduce engineering time and raise product
quality by capturing and reusing knowledge that is core to
the engineering organization. It will be a key tool of
every engineering organization, just as editors and
compilers are key tools today.

References
[Baxter92] I. Baxter. 1992. Design Maintenance Systems,

Comm. of the ACM 35(4), Apr 1992, ACM.
[BaxMeh97] I. Baxter and M. Mehlich. Reverse

Engineering is Reverse Forward Engineering.
4th Working Conference on Reverse
Engineering, 1997, IEEE

[BaxPidg97] I. Baxter and C. Pidgeon. Software Change
Through Design Maintenance. International
Conference on Software Maintenance, 1997,
IEEE Press.

[BaxterEtAl98] I. Baxter, et. al Clone Detection Using
Abstract Syntax Trees, International Conference
on Software Maintenance, 1998, IEEE.

[Baxter2004] I. Baxter, C. Pidgeon, M. Mehlich. DMS:
Program Transformations for Practical Scalable
Software Evolution, in Proceedings of the
International Conference on Software
Engineering, 2004, IEEE Press

[Boehm81] B. Boehm, Software Engineering Economics,
Prentice-Hall, 1981

[Neighbors84] J. Neighbors. The Draco Approach to
Constructing Software from Components. IEEE
Transactions on Software Engineering
10(5):564-574, 1984.

Copyright © 2001-2012 Semantic Designs, Inc. 6

	Keywords
	Abstract
	1 Automation and design knowledge
	2 What DMS does
	3 DMS overview
	4 When to use DMS
	5 Sample DMS Applications and Benefits
	6 Why not build tools from scratch?
	7 How DMS does it: A Generalized Compiler
	Summary
	References

